Application

The IOM3721 input/output expansion module is a part of the Metasys® system Field Equipment Controller family. Input/Output expansion modules (IOMs) expand the number of input/output points connected to a Network Automation Engine (NAE), Network Control Engine (NCE), Advanced Application Field Equipment Controller (FAC), Field Equipment Controller (FEC), or Variable Air Volume Modular Assembly (VMA) to monitor and control a wide variety of HVAC equipment.

IOM expansion modules operate on an RS-485 BACnet® MS/TP Bus and integrate into Johnson Controls® and third-party BACnet systems. IOMs

Note: With Release 10.1 of the Controller Configuration Tool (CCT), VMAs, FECs, and FACs can be configured to communicate using either the BACnet MS/TP or the N2 field bus networking protocol. The operation of the IOM is not affected by the selection of the BACnet MS/TP or the N2 protocol in the host controller, when the IOM is connected to the host controller using the SA bus.

North American emissions compliance

United States

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when this equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area may cause harmful interference, in which case the users will be required to correct the interference at their own expense.

Canada

This Class (A) digital apparatus meets all the requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la Classe (A) respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Installation

Observe the following guidelines when installing an expansion module:

• To minimize vibration and shock damage, transport the expansion module in the original container.

• Verify that all parts shipped with the expansion module.

• Do not drop the expansion module or subject it to physical shock.

Parts included

• One expansion module with removable terminal blocks (Power and SA/FC bus are removable)

• One installation instructions sheet

Materials and special tools needed

• Three fasteners appropriate for the mounting surface (M4 screws or #8 screws)

• One 20 cm (8 in.) or longer piece of 35 mm DIN rail and appropriate hardware for DIN rail mount

• Small straight-blade screwdriver for securing wires in the terminal blocks

Physical features

The following figure displays the physical features of an IOM, and the accompanying table provides a description of the physical features and a reference to further information where required.
Table 1: IOM3721 feature callout numbers and descriptions

<table>
<thead>
<tr>
<th>Callout</th>
<th>Physical feature: description and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device Address DIP Switch Block (see Setting the device address)</td>
</tr>
<tr>
<td>2</td>
<td>24 VAC, Class 2 Supply Power Terminal Blocks (see Supply power terminal block)</td>
</tr>
<tr>
<td>3</td>
<td>Cover Lift Tab (see Removing the expansion module cover)</td>
</tr>
<tr>
<td>4</td>
<td>Sensor Actuator (SA) Bus / Field Controller (FC) Bus Terminal Block (see SA/FC bus terminal block)</td>
</tr>
<tr>
<td>5</td>
<td>End-of-Line (EOL) Termination Switch (see Setting the End-of-Line (EOL) switch)</td>
</tr>
<tr>
<td>6</td>
<td>Binary Input (BI) Terminal Block: Dry Contact Maintained or Pulse Counter/Accumulator Mode (see Table 4)</td>
</tr>
<tr>
<td>7</td>
<td>LED Status Indicators (see Table 7)</td>
</tr>
<tr>
<td>8</td>
<td>Sensor Actuator (SA) Bus / Field Controller (FC) Bus Port (Rj-12 6-pin Modular Jack) (see SA/FC bus Port)</td>
</tr>
</tbody>
</table>

Mounting

Observe these guidelines when mounting an IOM expansion module:

- Ensure the mounting surface can support the expansion module, DIN rail, and any user-supplied enclosure.
- Mount the expansion module horizontally on 35 mm (1.4 in.) DIN rail whenever possible.
- Mount the expansion module in the proper mounting position (Figure 2).
- Mount the expansion module on a hard, even surface whenever possible in wall-mount applications.
- Use shims or washers to mount the expansion module securely and evenly on the mounting surface.
- Mount the expansion module in an area free of corrosive vapors and observe the Ambient Conditions requirements in Technical specifications.
- Provide for sufficient space around the expansion module for cable and wire connections for easy cover removal and good ventilation through the expansion module (50 mm [2 in.] minimum on the top, bottom, and front of the expansion module).
- Do not mount the expansion module on surfaces prone to vibration, such as duct work.
- Do not mount the expansion module in areas where electromagnetic emissions from other devices or wiring can interfere with expansion module communication.
Observe these additional guidelines when mounting an expansion module in a panel or enclosure:

- Mount the expansion module so that the enclosure walls do not obstruct cover removal or ventilation through the expansion module.
- Mount the expansion module so that the power transformer and other devices do not radiate excessive heat to the expansion module.
- Do not install the expansion module in an airtight enclosure.

Figure 2: Mounting positions

DIN rail mount applications

Mounting the expansion module horizontally on 35 mm (1.4 in.) DIN rail is the preferred method. To mount an expansion module on a 35 mm DIN rail, complete the following steps:

1. Securely mount a 20 cm (8 in.) or longer section of 35 mm (1.4 in.) DIN rail, horizontally and centered in the desired space.
2. Pull the two bottom mounting clips outward from the expansion module to the extended position.
3. Hang the expansion module on the DIN rail by the hooks at the top of the (DIN rail) channel on the back of the expansion module, and position the expansion module snugly against the DIN rail.
4. Push the bottom mounting clips inward (up) to secure the expansion module on the DIN rail.

To remove the expansion module from the DIN rail, pull the bottom mounting clips out to the extended position and carefully lift the expansion module off the DIN rail.

Wall mount applications

To mount an expansion module directly on a wall or other flat vertical surface, complete the following steps:

1. Pull the two bottom mounting clips outward and ensure they are locked in the extended position.
2. Mark the mounting hole locations on the wall using the provided dimensions and one of the mount positions, vertical or horizontal. You can also hold the expansion module up to the wall or surface in a proper mount position and mark the hole locations through the mounting clips.
3. Drill holes in the wall or surface at the marked locations, and insert appropriate wall anchors in the holes (if necessary).
4. Hold the expansion module in place, and insert the screws through the mounting clips and into the holes (or anchors). Carefully tighten all of the screws.

> **Important:** Do not overtighten the mounting screws. Overtightening the screws may damage the mounting clips.

Mounting features and dimensions

See the following figure for mounting dimensions listed in millimeters and inches. Inches are listed in parenthesis. The following figure also illustrates the DIN rail channel and the mounting clips in an extended position.
Wiring

WARNING

Risk of Electric Shock:
Disconnect or isolate all power supplies before making electrical connections. More than one disconnection or isolation may be required to completely de-energize equipment. Contact with components carrying hazardous voltage can cause electric shock and may result in severe personal injury or death.

CAUTION

Risk of Property Damage:
Do not apply power to the system before checking all wiring connections. Short circuited or improperly connected wires may result in permanent damage to the equipment.

Important: Do not exceed the expansion module electrical ratings. Exceeding expansion module electrical ratings can result in permanent damage to the expansion module and void any warranty.

Important: Use copper conductors only. Make all wiring in accordance with local, national, and regional regulations.

Important: Electrostatic discharge can damage expansion module components. Use proper electrostatic discharge precautions during installation, setup, and servicing to avoid damaging the expansion module.

For detailed information on configuring and wiring an MS/TP bus, FC bus, and SA bus, refer to the **MS/TP Communications Bus Technical Bulletin (LIT-12011034).**

Terminal blocks and bus ports

See Figure 1 for terminal block and bus port locations on the expansion module. Observe the following guidelines when wiring an expansion module.

Input terminal blocks

The IOM3721 has inputs only (no outputs). The inputs are located on both the top and bottom of the expansion module. See Table 4 for more information about I/O terminal functions, requirements, and ratings.
SA/FC bus terminal block

An IOM can be connected to an SA bus or an FC bus, but not to both buses simultaneously. The SA/FC bus terminal block is a removable, 4-terminal plug that fits into a board-mounted jack.

When connecting the IOM to an FC bus, wire the bus terminal block plugs on the expansion module, and the other controllers and expansion modules in a daisy-chain configuration using 3-wire twisted, shielded cable as shown in the following figure.

Figure 4: FC bus terminal block wiring

When connecting the IOM to an SA bus, wire the bus terminal block plugs on the expansion module and other SA bus devices in a daisy-chain configuration using 4-wire twisted, shielded cable as shown in Figure 5.

Figure 5: SA bus terminal block wiring

Note: The SA PWR/SHLD terminal does not supply 15 VDC. The SA PWR/SHLD terminal is isolated and can be used to connect (daisy chain) the 15 VDC power leads on the SA bus (Figure 5), or the cable shields on the FC bus (Figure 4). The SA bus supervisor supplies 15 VDC to devices on the SA bus requiring power.

SA/FC bus Port

The SA/FC bus port on the front of the controller is an RJ-12, 6-position modular jack that provides a connection for devices on the SA bus, a Wireless Commissioning Converter, a ZFR/ZFR Pro Wireless Router (depending on which bus the controller is operating on).

The SA/FC bus port is connected internally to the SA/FC bus terminal block. See Table 3 for more information. The SA/FC bus port pin assignment is shown in Figure 6.

Figure 6: Pin number assignments for sensor, SA bus and FC bus ports on Controllers

Supply power terminal block

The 24 VAC supply power terminal block is a gray, removable, 3-terminal plug that fits into a board-mounted jack on the top right of the expansion module.

Wire the 24 VAC supply power wires from the transformer to the HOT and COM terminals on the terminal plug as shown in Figure 7. The middle terminal on the supply power terminal block is not used.
Figure 7: 24 VAC supply power terminal block wiring

Wireless network applications

The controller can also be installed in a wireless application using a ZFR/ZFR Pro Wireless Field Bus Router.

To configure an expansion module for use with the ZFR Series Wireless Field Bus system:

- **Note:** can communicate wirelessly on the FC bus only.

1. Connect the ZFR/ZFR Pro Wireless Field Bus Router to the FC bus port (RJ-12 modular jack) on the front of the expansion module.

2. Ensure that the expansion module’s device address DIP switches are set to the correct device address. See Setting the device address.

3. Set DIP switch 128 to ON, which enables wireless operation on the expansion module.

Cable and wire length guidelines

The following table defines cable length guidelines for the various wire sizes that may be used for wiring low-voltage (<30 V) input and outputs.

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Wire size/Gauge and type</th>
<th>Maximum cable length and type</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0 mm (18 AWG) stranded copper</td>
<td>457 m (1,500 ft) twisted wire</td>
<td>100 mV maximum voltage drop Depending on the cable and the connected input device, you may have to define an offset in the setup software for the input or output point.</td>
</tr>
<tr>
<td></td>
<td>0.8 mm (20 AWG) stranded copper</td>
<td>297 m (975 ft) twisted wire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6 mm (22 AWG) stranded copper</td>
<td>183 m (600 ft) twisted wire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 mm (24 AWG) stranded copper</td>
<td>107 m (350 ft) twisted wire</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.0 mm (18 AWG) stranded copper</td>
<td>229 m (750 ft) twisted wire</td>
<td>100 mV maximum voltage drop Depending on the cable and the connected input device, you may have to define an offset in the setup software for the input or output point.</td>
</tr>
<tr>
<td></td>
<td>0.8 mm (20 AWG) stranded copper</td>
<td>137 m (450 ft) twisted wire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6 mm (22 AWG) stranded copper</td>
<td>91 m (300 ft) twisted wire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 mm (24 AWG) stranded copper</td>
<td>61 m (200 ft) twisted wire</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>See Figure 8 to select wire size/gauge. Use stranded copper wire.</td>
<td>See Figure 8 to determine cable length. Use twisted wire cable.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Maximum cable length versus load current

Use the following figure to estimate the maximum cable length relative to the wire size and the load current (in mA) when wiring inputs.

Note: The following information applies to low-voltage (<30 V) inputs only.

Figure 8: Maximum wire length for low-voltage (<30 V) Inputs by current and wire Size

Communications bus and supply power wiring guidelines

Table 3 provides information about the functions, ratings, and requirements for the expansion module's communication bus and supply power terminals; it additionally provides guidelines for wire sizes, cable types, and cable lengths when wiring the expansion module communication buses and supply power.

In addition to the guidelines in Table 3, observe the following guidelines when wiring an SA or FC bus and the 24 VAC supply power:

- Run all low-voltage wiring and cables separate from high-voltage wiring.
- All SA and FC bus cables, regardless of wire size, should be twisted, insulated, stranded copper wire.
- Shielded cable is strongly recommended for all SA and FC bus cables.
- Refer to the MS/TP Communications Bus Technical Bulletin (LIT-12011034) for detailed information regarding wire size and cable length requirements for the SA and FC buses.

Communications bus and supply power terminal blocks, ratings, and requirements

Table 3: Communications bus and supply power terminal blocks, functions, ratings, requirements, and cables

<table>
<thead>
<tr>
<th>Terminal block/Port label</th>
<th>Terminal labels</th>
<th>Function, electrical ratings/Requirements</th>
<th>Recommended cable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC Bus or SA Bus</td>
<td>+</td>
<td>FC or SA Bus Communications</td>
<td>FC Bus: 0.6 mm (22 AWG) stranded, 3-wire twisted, shielded cable recommended. SA Bus: 0.6 mm (22 AWG) stranded, 4-wire (2 twisted-pairs), shielded cable recommended.</td>
</tr>
<tr>
<td></td>
<td>COM</td>
<td>Signal Reference (Common) for FC or SA Bus communications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHLD or SA PWR</td>
<td>SHLD on FC Bus: Isolated terminal (optional shield drain connection) SA PWR on SA Bus: 15 VDC power lead connection Note: The SA PWR terminal on an IOM expansion module does not supply 15 VDC. The SA bus supervisor supplies 15 VDC to devices on the SA bus requiring power.</td>
<td></td>
</tr>
<tr>
<td>SA/FC BUS (Port)</td>
<td>RJ-12 6-Position Modular Connector provides: FC or SA Bus Communications FC or SA Bus Signal Reference and 15 VDC Common Commissioning Converter or ZFR /ZFR Pro Wireless Router (Maximum total current draw for SA Bus is 100 mA.)</td>
<td>Wireless Commissioning Converter retractable cable or 24 AWG 3-pair CAT 3 Cable <30.5 m (100 ft)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Communications bus and supply power terminal blocks, functions, ratings, requirements, and cables

<table>
<thead>
<tr>
<th>Terminal block/Port label</th>
<th>Terminal labels</th>
<th>Function, electrical ratings/Requirements</th>
<th>Recommended cable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>24~</td>
<td>HOT</td>
<td>24 VAC Power Supply - Hot Supplies 20–30 VAC (Nominal 24 VAC)</td>
<td>0.8 mm to 1.0 mm (18 AWG) 2-wire</td>
</tr>
<tr>
<td></td>
<td>COM</td>
<td>24 VAC Power Supply - Common</td>
<td></td>
</tr>
</tbody>
</table>

Note: See Table 2 to determine wire size and cable lengths for cables.

Note: The SA Bus and FC Bus wiring recommendations in this table are for MS/TP bus at 38,400 baud. For more information, refer to the MS/TP Communications Bus Technical Bulletin (LIT-12011034).

Terminal Wiring Guidelines, Functions, Ratings, and Requirements

Input and Output wiring guidelines

Table 4 provides information and guidelines about the functions, ratings, and requirements for the expansion module input and output terminals, and references guidelines for determining proper wire sizes and cable lengths.

In addition to the wiring guidelines in Table 4

• Run all low-voltage wiring and cables separate from high-voltage wiring.

• All input and output cables, regardless of wire size or number of wires, should consist of stranded, insulated, and twisted copper wires. Observe these guidelines when wiring controller inputs and outputs:
 • Shielded cable is not required for input or output cables.
 • Shielded cable is recommended for input and output cables that are exposed to high electromagnetic or radio frequency noise.
 • Inputs/outputs with cables less than 30 m (100 ft) typically do not require an offset in the software setup. Cable runs over 30 m (100 ft) may require an offset in the input/output software setup.
I/O terminal blocks, ratings, and requirements

Table 4: IOM3721 terminal blocks, functions, ratings, requirements, and cables

<table>
<thead>
<tr>
<th>Terminal block label</th>
<th>Terminal label</th>
<th>Function, ratings, requirements</th>
<th>Determine wire size and maximum cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINARY INPUT</td>
<td>INn</td>
<td>Binary Input - Dry Contact Maintained Mode 0.01 second minimum pulse width Internal 16 V, 10K ohm pull up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary Input - Pulse Counter/Accumulator Mode 0.01 second minimum pulse width (50 Hz at 50% duty cycle) Internal 16 V, 10K ohm pull up</td>
<td>See Guideline A in Table 2.</td>
</tr>
<tr>
<td></td>
<td>ICOM n</td>
<td>Binary Input Common for all Binary Input (IN) terminals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: All Binary ICOMn terminals share a common, which is isolated from all other commons, except the Configurable Output (CO) common (OCOMn) when the CO is defined as an Analog Output.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: For all Binary ICOMn terminals, BI is isolated from the FC bus common.</td>
<td></td>
</tr>
</tbody>
</table>

Termination details

A set of Johnson Controls termination diagrams provides details for wiring inputs and outputs to the controllers. See the following table in this section for the applicable termination diagram.

Table 5: Termination details

<table>
<thead>
<tr>
<th>Type of device</th>
<th>Type of Input/Output</th>
<th>Termination diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Contact (Binary Input)</td>
<td>BI</td>
<td></td>
</tr>
</tbody>
</table>

Setup and Adjustments

Setting the device address

Metasys expansion modules are master devices on MS/TP (SA or FC) buses. Before operating an expansion module on a bus, you must set a valid and unique device address for each expansion module on the bus. You set an expansion module’s device address by setting the positions of the switches on the DIP switch block at the top of the expansion module. Device addresses 4 through 127 are the valid addresses for these expansion modules. The DIP switch block has eight switches numbered 128, 64, 32, 16, 8, 4, 2, and 1. Switches 64 through 1 are device address switches. Switch 128 must be set to off for all hard-wired SA and FC bus applications. Switch 128 must be set to OFF for all hard-wired SA and FC Bus applications

Figure 9: Device address DIP switch block set to address 21
Note: *Metasys* controllers ship with switch 128 ON and the remaining address switches OFF rendering the controllers wired subordinate devices, which do not operate on MS/TP buses, but do not interfere with bus operation. Set a valid and unique device address on the expansion module before applying power to the expansion module on the bus.

To set the device addresses on *Metasys* expansion modules, complete the following steps:

1. Set all of the switches on the address DIP switch block (128 through 1) to OFF.

2. Set one or more of the seven address switches (64 though 1) to ON, so that the sum of the switch numbers set to ON equals the intended device address, and ensure that switch 128 remains set to OFF.

Note: To do this, set the highest number switch that is less than or equal to the intended device address to ON. Then continue setting lower numbered switches until the total equals the intended address. For example, if the intended device address is 21, set switches 16, 4, and 1 to ON (16+4+1=21) and all other switches to OFF.

3. Set a unique and sequential device address for each of the expansion modules connected on the SA or FC bus starting with device address 4.

Note: To ensure the best bus performance, set sequential device addresses with no gaps in the device address range (4, 5, 6, 7, 8, 9, and so on). The expansion modules do not need to be physically connected on the bus in their numerical device address order.

4. Write each expansion module's device address on the white label below the DIP switch block on the expansion module's cover.

 The following table describes the FC bus and SA bus device addresses for Johnson Controls MS/TP communications bus applications.

<table>
<thead>
<tr>
<th>Device Address</th>
<th>Use on Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Switch 128 Off)</td>
<td>Reserved for FC Bus Supervisory Controller (not for use on controllers or expansion modules).</td>
</tr>
<tr>
<td>1-3 (Switch 128 Off)</td>
<td>Reserved for peripheral devices (not for use on controllers or expansion modules).</td>
</tr>
<tr>
<td>4-127 (Switch 128 Off)</td>
<td>Used for MSTP master devices (controllers and expansion modules) that are hardwired to an SA bus or FC bus.</td>
</tr>
</tbody>
</table>

Removing the expansion module cover

Important: Electrostatic discharge can damage expansion module components. Use proper electrostatic discharge precautions during installation, setup, and servicing to avoid damaging the expansion module.

Important: Disconnect all power sources to the expansion module before removing cover and changing the position of any jumper or the EOL switch on the expansion module. Failure to disconnect power before changing a jumper or EOL switch position can result in damage to the expansion module and void any warranties.

The expansion module cover is held in place by four plastic latches that extend from the base and snap into slots on the inside of the housing cover.

To remove the expansion module cover, complete the following steps:

1. Place your fingernails under the two cover lift tabs on the sides of the housing cover and gently pry the top of the cover away from the base to release the cover from the two upper latches.

2. Pivot the top of the cover further to release it from the lower two latches.

3. Replace the cover by placing it squarely over the base, and then gently and evenly push the cover onto the latches until they snap into the latched position.

Setting the End-of-Line (EOL) switch

Each expansion module has an EOL switch, which when set to ON, sets the expansion module as a terminating device on the bus. See Figure 1 for the
EOL switch location. The default EOL switch position is OFF.

Figure 10: End-of-Line switch positions

To set the EOL switch on an expansion module, complete the following steps:

1. Determine the physical location of the expansion module on the SA or FC bus.

2. Determine if the expansion module must be set as a terminating device on the bus.

 ☑️ **Note:** The EOL termination rules for SA buses and FC buses are different. Refer to the MS/TP Communications Bus Technical Bulletin (LIT-12011034) for detailed information regarding EOL termination rules and EOL switch settings on SA and FC buses.

3. If the expansion module is a terminating device on the FC bus, set the EOL switch to ON. If the expansion module is not a terminating device on the bus, set the EOL switch to OFF.

When an expansion module is connected to power with its EOL switch set to ON, the amber EOL LED on the expansion module cover is lit.

Commissioning

You commission expansion modules with CCT software, using a Bluetooth Wireless Commissioning Converter (BTCVT), through Mobile Access Portal (MAP) Gateway at version 4.2 or above, or in BACnet router mode when connected to an NAE or NCEa Supervisory Controller. Refer to the Controller Tool Help (LIT-12011147) for detailed information on commissioning expansion modules.

☑️ **Note:** To configure the IOM on the Field Controller (FC) bus, use CCT 10.4 release mode.

☑️ **Note:** The MAP Gateway serves as a replacement for the BTCVT, which is no longer available for purchase, but continues to be supported.

LED status and states

Observe the Status LEDs on the front of the expansion module. Table 7 provides LED status indicator information for troubleshooting the expansion module.

<table>
<thead>
<tr>
<th>LED label</th>
<th>LED color</th>
<th>Normal LED state</th>
<th>Description of LED states</th>
</tr>
</thead>
</table>
| POWER | Green | On Steady | Off Steady = No Supply Power or the expansion module’s polyswitch/resettable fuse is open. Check Output wiring for short circuits and cycle power to expansion module.
On Steady = Power Connected |
| FAULT | Red | Off Steady | Off Steady = No Faults
On Steady = Device Fault; no application loaded; Main Code download required, if the expansion module is in Boot mode, or a firmware mismatch exists between the expansion module and the ZFR1811 Wireless Field Bus Router
Blink - 2 Hz = Download or Startup in progress, not ready for normal operation |
| SA/FC BUS | Green | Blink - 2 Hz | Blink - 2 Hz = Data Transmission (normal communication)
Off Steady = No Data Transmission (N/A - auto baud not supported)
On Steady = Communication lost, waiting to join communication ring |
| EOL | Amber | Off (Except on terminating devices) | On Steady = EOL switch in ON position
Off Steady = EOL switch in Off position |
Repair information

If an expansion module fails to operate within its specifications, replace the expansion module. For a replacement expansion module, contact your Johnson Controls representative.

Accessories

Table 8: Accessories Ordering Information

<table>
<thead>
<tr>
<th>Product Code Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-2420</td>
<td>Transformer, 120 VAC Primary to 24 VAC secondary, 20 VA, Wall Plug</td>
</tr>
<tr>
<td>Y65T31-0</td>
<td>Transformer, 120/208/240 VAC Primary to 24 VAC Secondary, 40 VA, Foot Mount, 8 in. Primary Leads and Secondary Screw Terminals, Class 2</td>
</tr>
<tr>
<td>AS-XFR050-0</td>
<td>Power transformer (Class 2, 24 VAC, 50 VA maximum output), no enclosure</td>
</tr>
<tr>
<td>AP-TBK4SA-0</td>
<td>Replacement SA Bus Terminal Blocks, 4-Position, Brown, Bulk Pack of 10</td>
</tr>
<tr>
<td>AP-TBK4FC-0</td>
<td>Replacement FC Bus Terminal Blocks, 4-Position, Blue, Bulk Pack of 10</td>
</tr>
<tr>
<td>AP-TBK3PW-0</td>
<td>Replacement Power Terminal Blocks, 3-Position, Gray, Bulk Pack of 10</td>
</tr>
<tr>
<td>WNC1800/ZFR182x</td>
<td>This system is used for installations that support BACnet/IP but can also coexist with the ZFR1800 Series when installed under the same supervisor (i.e., network engine). Refer to the WNC1800/ZFR182x Pro Series Wireless Field Bus System Product Bulletin (LIT-12012320) for a list of available products.</td>
</tr>
<tr>
<td>ZFR1800 Series</td>
<td>This system is used for installations that only support BACnet MS/TP. Refer to the ZFR1800 Series Wireless Field Bus System Product Bulletin (LIT-12011336) for a list of available products.</td>
</tr>
<tr>
<td>NS Series Network Sensors</td>
<td>Refer to the NS Series Network Sensors Product Bulletin (LIT-12011574) for specific sensor model descriptions.</td>
</tr>
<tr>
<td>WRZ Series Wireless Room Sensors</td>
<td>Refer to the WRZ Series Wireless Room Sensors Product Bulletin (LIT-12000653) for specific sensor model descriptions.</td>
</tr>
<tr>
<td>Mobile Access Portal (MAP) Gateway</td>
<td>Refer to the Mobile Access Portal Gateway Catalog Page (LIT-1900869) to identify the appropriate product for your region.</td>
</tr>
</tbody>
</table>

Note: Additional Y6x-x Series transformers are also available. Refer to the Series Y63, Y64, Y65, Y66, and Y69 Transformers Product Bulletin (LIT-125755) for more information.
Technical specifications

Table 9: IOM3721 technical specifications

<table>
<thead>
<tr>
<th>Product Code Number</th>
<th>MS-IOM3721-x Input/Output Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirement</td>
<td>24 VAC (nominal, 20 VAC minimum/30 VAC maximum), 50/60 Hz, power supply Class 2 (North America), Safety Extra-Low Voltage (SELV) (Europe)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>14 VA maximum</td>
</tr>
</tbody>
</table>
| Ambient Conditions | **Operating**: 0°C to 50°C (32°F to 122°F); 10% to 90% RH noncondensing
Storage: -40°C to 80°C (-40°F to 176°F); 5% to 95% RH noncondensing |
| Addressing | DIP switch set; valid controller device addresses 4–127 (Device addresses 0–3 and 128–255 are reserved and not valid expansion module addresses.) |
| Communications Bus | BACnet® MS/TP, RS-485:
3-wire FC Bus between the supervisory controller and other controllers (for MS/TP bus communications at 38,400 baud)
4-wire SA bus between expansion module, network sensors and other sensor/actuator devices, includes a lead to source 15 VDC supply power (from expansion module) to bus devices (for MS/TP bus communications at 38,400 baud) |
| Processor | H8SX/166xR Renesas® 32-bit microcontroller |
| Memory | 640 KB Flash Memory and 128 KB Random Access Memory (RAM) |
| Input and Output Capabilities | 16 - Binary Inputs: Defined as Dry Contact Maintained or Pulse Counter/Accumulator Mode |
| Terminations | **Input**: Fixed Screw Terminal Blocks
SA/FC Bus and Supply Power: 4-Wire and 3-Wire Pluggable Screw Terminal Blocks |
| Mounting | Horizontal on single 35 mm DIN rail mount (preferred), or screw mount on flat surface with three integral mounting clips on controller |
| Housing | Enclosure material: ABS and polycarbonate UL94 5VB; self-extinguishing, plenum-rated Protection Class: IP20 (IEC529) |
| Dimensions (Height x Width x Depth) | 150 mm x 164 mm x 53 mm (5-7/8 in. x 6-1/2 in. x 2-1/8 in.) including terminals and mounting clips
Note: Mounting space requires an additional 50 mm (2 in.) space on top, bottom and front face of expansion module for easy cover removal, ventilation, and wire terminations. |
| Weight | 0.5 kg (1.1 lb) |
| Compliance | **United States**: UL Listed, File E107041, CCN PAZX, UL 916, Energy Management Equipment
FCC Compliant to CFR47, Part 15, Subpart B, Class A
Canada: UL Listed, File E107041, CCN PAZX CAN/CSA C22.2 No.205, Signal Equipment Industry Canada Compliant, ICES-003
Europe: Johnson Controls declares that this product is in compliance with the essential requirements and other relevant provisions of the EMC Directive.
Australia and New Zealand: RCM Mark, Australia/NZ Emissions Compliant
BACnet International: BACnet Testing Laboratories (BTL) Protocol Revision 4 Listed BACnet Application Specific Controller (B-ASC) |

The performance specifications are nominal and conform to acceptable industry standard. For application at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls shall not be liable for damages resulting from misapplication or misuse of its products.

Product warranty

This product is covered by a limited warranty, details of which can be found at www.johnsoncontrols.com/buildingswarranty.
Single point of contact

<table>
<thead>
<tr>
<th>APAC</th>
<th>Europe</th>
<th>NA/SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHNSON CONTROLS</td>
<td>JOHNSON CONTROLS</td>
<td>JOHNSON CONTROLS</td>
</tr>
<tr>
<td>C/O CONTROLS PRODUCT</td>
<td>WESTENDHOF 3</td>
<td>507 E MICHIGAN ST</td>
</tr>
<tr>
<td>MANAGEMENT</td>
<td>45143 ESSEN</td>
<td>MILWAUKEE WI 53202</td>
</tr>
<tr>
<td>NO. 32 CHANGJIANG RD</td>
<td>GERMANY</td>
<td>USA</td>
</tr>
<tr>
<td>NEW DISTRICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WUXI JIANGSU PROVINCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214028 CHINA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2019 Johnson Controls. All rights reserved. All specifications and other information shown were current as of document revision and are subject to change without notice.