Fire Alarm Control Panel
IFC-3030
Operations Manual
Fire Alarm System Limitations

While a fire alarm system may lower insurance rates, it is not a substitute for fire insurance!

An automatic fire alarm system—typically made up of smoke detectors, heat detectors, manual pull stations, audible warning devices, and a fire alarm control panel with remote notification capability—can provide early warning of a developing fire. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire. The Manufacturer recommends that smoke and/or heat detectors be located throughout a protected premise following the recommendations of the current edition of the National Fire Protection Association Standard 72 (NFPA 72), manufacturer’s recommendations, State and local codes, and the recommendations contained in the Guide for Proper Use of System Smoke Detectors, which is made available at no charge to all installing dealers. A study by the Federal Emergency Management Agency (an agency of the United States government) indicated that smoke detectors may not go off in as many as 35% of all fires. While fire alarm systems are designed to provide early warning against fire, they do not guarantee warning or protection against fire. A fire alarm system may not provide timely or adequate warning, or simply may not function, for a variety of reasons:

Smoke detectors may not sense fire where smoke cannot reach the detectors such as in chimneys, in or behind walls, on roofs, or on the other side of closed doors. Smoke detectors also may not sense a fire on another level or floor of a building. A second-floor detector, for example, may not sense a first-floor or basement fire.

Particles of combustion or “smoke” from a developing fire may not reach the sensing chambers of smoke detectors because:

- Barriers such as closed or partially closed doors, walls, or chimneys may inhibit particle or smoke flow.
- Smoke particles may become “cold,” stratify, and not reach the ceiling or upper walls where detectors are located.
- Smoke particles may be blown away from detectors by air outlets.
- Smoke particles may be drawn into air returns before reaching the detector.

The amount of “smoke” present may be insufficient to alarm smoke detectors. Smoke detectors are designed to alarm at various levels of smoke density. If such density levels are not created by a developing fire at the location of detectors, the detectors will not go into alarm.

Smoke detectors, even when working properly, have sensing limitations. Detectors that have photoelectric sensing chambers tend to detect smoldering fires better than flaming fires, which have little visible smoke. Detectors that have ionizing-type sensing chambers tend to detect fast-flaming fires better than smoldering fires. Because fires develop in different ways and are often unpredictable in their growth, neither type of detector is necessarily best and a given type of detector may not provide adequate warning of a fire.

Smoke detectors cannot be expected to provide adequate warning of fires caused by arson, children playing with matches (especially in bedrooms), smoking in bed, and violent explosions (caused by escaping gas, improper storage of flammable materials, etc.).

Heat detectors do not sense particles of combustion and alarm only when heat on their sensors increases at a predetermined rate or reaches a predetermined level. Rate-of-rise heat detectors may be subject to reduced sensitivity over time. For this reason, the rate-of-rise feature of each detector should be tested at least once per year by a qualified fire protection specialist. Heat detectors are designed to protect property, not life.

IMPORTANT! Smoke detectors must be installed in the same room as the control panel and in rooms used by the system for the connection of alarm transmission wiring, communications, signaling, and/or power. If detectors are not so located, a developing fire may damage the alarm system, crippling its ability to report a fire.

Audible warning devices such as bells may not alert people if these devices are located on the other side of closed or partly open doors or are located on another floor of a building. Any warning device may fail to alert people with a disability or those who have recently consumed drugs, alcohol or medication. Please note that:

- Strobes can, under certain circumstances, cause seizures in people with conditions such as epilepsy.
- Studies have shown that certain people, even when they hear a fire alarm signal, do not respond or comprehend the meaning of the signal. It is the property owner’s responsibility to conduct fire drills and other training exercise to make people aware of fire alarm signals and instruct them on the proper reaction to alarm signals.
- In rare instances, the sounding of a warning device can cause temporary or permanent hearing loss.

A fire alarm system will not operate without any electrical power. If AC power fails, the system will operate from standby batteries only for a specified time and only if the batteries have been properly maintained and replaced regularly.

Equipment used in the system may not be technically compatible with the control panel. It is essential to use only equipment listed for service with your control panel.

Telephone lines needed to transmit alarm signals from a premise to a central monitoring station may be out of service or temporarily disabled. For added protection against telephone line failure, backup radio transmission systems are recommended.

The most common cause of fire alarm malfunction is inadequate maintenance. To keep the entire fire alarm system in excellent working order, ongoing maintenance is required per the manufacturer’s recommendations, and UL and NFPA standards. At a minimum, the requirements of NFPA 72 shall be followed. Environments with large amounts of dust, dirt or high air velocity require more frequent maintenance. A maintenance agreement should be arranged through the local manufacturer’s representative. Maintenance should be scheduled monthly or as required by National and/or local fire codes and should be performed by authorized professional fire alarm installers only. Adequate written records of all inspections should be kept.
Installation Precautions

Adherence to the following will aid in problem-free installation with long-term reliability:

WARNING - Several different sources of power can be connected to the fire alarm control panel. Disconnect all sources of power before servicing. Control unit and associated equipment may be damaged by removing and/or inserting cards, modules, or interconnecting cables while the unit is energized. Do not attempt to install, service, or operate this unit until manuals are read and understood.

CAUTION - System Re-acceptance Test after Software Changes: To ensure proper system operation, this product must be tested in accordance with NFPA 72 after any programming operation or change in site-specific software. Re-acceptance testing is required after any change, addition or deletion of system components, or after any modification, repair or adjustment to system hardware or wiring. All components, circuits, system operations, or software functions known to be affected by a change must be 100% tested. In addition, to ensure that other operations are not inadvertently affected, at least 10% of initiating devices that are not directly affected by the change, up to a maximum of 50 devices, must also be tested and proper system operation verified.

This system meets NFPA requirements for operation at 0-49°C/32-120°F and at a relative humidity (non condensing) of 85% at 30°C (86°F) per NFPA, and 93% ± 2% at 32°C ± 2°C (89.6°F ± 1.1°F) per ULC. However, the useful life of the system’s standby batteries and the electronic components may be adversely affected by extreme temperature ranges and humidity. Therefore, it is recommended that this system and its peripherals be installed in an environment with a normal room temperature of 15-27°C/60-80°F.

Verify that wire sizes are adequate for all initiating and indicating device loops. Most devices cannot tolerate more than a 10% I.R. drop from the specified device voltage.

Like all solid state electronic devices, this system may operate erratically or can be damaged when subjected to lightning induced transients. Although no system is completely immune from lightning transients and interference, proper grounding will reduce susceptibility. Overhead or outside aerial wiring is not recommended, due to an increased susceptibility to nearby lightning strikes. Consult with the Technical Services Department if any problems are anticipated or encountered.

Disconnect AC power and batteries prior to removing or inserting circuit boards. Failure to do so can damage circuits.

Remove all electronic assemblies prior to any drilling, filing, reaming, or punching of the enclosure. When possible, make all cable entries from the sides or rear. Before making modifications, verify that they will not interfere with battery, transformer, or printed circuit board location.

Do not tighten screw terminals more than 9 in-lbs. Over-tightening may damage threads, resulting in reduced terminal contact pressure and difficulty with screw terminal removal.

This system contains static-sensitive components. Always ground yourself with a proper wrist strap before handling any circuits so that static charges are removed from the body. Use static suppressive packaging to protect electronic assemblies removed from the unit.

Follow the instructions in the installation, operating, and programming manuals. These instructions must be followed to avoid damage to the control panel and associated equipment. FACP operation and reliability depend upon proper installation.

FCC Warning

WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause interference to radio communications. It has been tested and found to comply with the limits for class A computing devices pursuant to Subpart B of Part 15 of FCC Rules, which is designed to provide reasonable protection against such interference when devices are operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user will be required to correct the interference at his or her own expense.

Canadian Requirements

This digital apparatus does not exceed the Class A limits for radiation noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le present appareil numerique n’emet pas de bruits radioelectriques depassant les limites applicables aux appareils numeriques de la classe A prescrites dans le Reglement sur le brouillage radioelectrique edicte par le ministere des Communications du Canada.

HARSH™, NIS™, Notifier Integrated Systems™, NOTI•FIRE•NET™, and ONYXWorks™ are all trademarks; and FlashScan®, NION®, NOTIFIER®, ONYX®, UniNet®, VeriFire®, and VIEW® are all registered trademarks of Honeywell International Inc. Echelon® is a registered trademark and LonWorks™ is a trademark of Echelon Corporation. ARCNET® is a registered trademark of Datapoint Corporation. Microsoft® and Windows® are registered trademarks of the Microsoft Corporation. LEXAN® is a registered trademark of GE Plastics, a subsidiary of General Electric Company. ©2005 by Honeywell International Inc. All rights reserved. Unauthorized use of this document is strictly prohibited.
Documentation Feedback

Your feedback helps us keep our documentation up-to-date and accurate. If you have any comments or suggestions about our online Help or printed manuals, you can email us.

Please include the following information:

- Product name and version number (if applicable)
- Printed manual or online Help
- Topic Title (for online Help)
- Page number (for printed manual)
- Brief description of content you think should be improved or corrected
- Your suggestion for how to correct/improve documentation

Send email messages to:

FireSystems.TechPubs@honeywell.com

Please note this email address is for documentation feedback only. If you have any technical issues, please contact Technical Services.
Table of Contents

Section 1 General Information
- 1.1: About This Manual ... 7
- 1.2: Supplemental Information ... 7
- 1.3: Introduction to the Control Panel ... 8
- 1.4: Operating Features ... 8
 - 1.4.1: The Display/Keypad.. 10
 - The Liquid Crystal Display .. 10
 - The Keypad ... 10
- 1.5: Message Formats ... 12
 - 1.5.1: System Normal Screen .. 12
 - 1.5.2: Event Reporting Format .. 13
 - Point Events Format .. 13
 - System Events Format ... 14
- 1.6: Navigating Menu and Programming Screens 15
- 1.7: The Main Menu .. 15
 - 1.7.1: Event Counts Display ... 16
 - 1.7.2: More Information ... 17
 - 1.7.3: Multiple Event List ... 18
 - 1.7.4: History Display (History Select Screen) 19
 - 1.7.5: Read Status ... 20
 - 1.7.6: Program/Alter Status ... 20
 - 1.7.7: Printer Functions ... 20
- 1.8: System Troubles .. 28
- 1.9: Point (Device) Troubles ... 26
- 1.10: System Events Format ... 14
- 1.11: Point Events Format ... 13
- 1.12: More Information ... 17
- 1.13: History Display (History Select Screen) 19
- 1.14: Read Status .. 20
- 1.15: Program/Alter Status ... 20
- 1.16: Printer Functions ... 20

Section 2 Operation of the Control Panel
- 2.1: Overview .. 21
 - 2.1.1: System Normal ... 21
 - 2.1.2: Acknowledging an Event ... 21
- 2.2: Fire Alarm Event .. 23
 - 2.2.1: How the Control Panel Indicates a Fire Alarm 23
 - 2.2.2: How to Respond to a Fire Alarm 23
 - 2.2.3: Interpreting Type ID Codes .. 24
- 2.3: System or Point Trouble Event ... 25
 - 2.3.1: How the Control Panel Indicates a System or Point Trouble .. 25
 - 2.3.2: How to Respond to a System or Point Trouble 26
 - 2.3.3: Trouble Types ... 26
 - Point (Device) Troubles ... 26
 - System Troubles ... 28
 - 2.3.4: Interpreting Type ID Codes .. 29
- 2.4: Pre-alarm Event .. 30
 - 2.4.1: How the Control Panel Indicates a Pre-alarm 30
 - 2.4.2: How to Respond to a Pre-Alarm Warning 30
 - 2.4.3: Interpreting Type ID Codes .. 31
- 2.5: Security Alarm Event ... 32
 - 2.5.1: How the Control Panel Indicates a Security Alarm 32
 - 2.5.2: How to Respond to a Security Alarm 32
 - 2.5.3: Interpreting Security Type Codes 33
- 2.6: Supervisory Signal Event .. 34
 - 2.6.1: How the Control Panel Indicates an Active Supervisory 34
 - 2.6.2: How to Respond to an Active Supervisory 34
 - 2.6.3: How to Interpret Type Codes .. 35
- 2.7: Disabled Points Event .. 36
- 2.8: Active Event .. 37
 - 2.8.1: How the Control Panel Indicates an Active Fire Control Point .. 37
 - 2.8.2: How the Control Panel Indicates an Active Non-fire Point .. 37
2.9: Operation of Special System Timers, Presignal, and PAS ... 38
 2.9.1: System (Panel) Timers .. 38
 Alarm Verification Timer (VERIFY TIME) .. 38
 AC Fail Delay Timer ... 38
 Silence Inhibit Timer.. 38
 Auto Silence Timer .. 38
 2.9.2: Presignal ... 38
 How the Panel Indicates a Presignal Alarm .. 39
 How to Respond to a Presignal Alarm ... 39
 2.9.3: PAS (Positive Alarm Sequence) ... 39

Section 3 Read Status ... 41
 3.1: Point Select Screen ... 41
 3.2: Smoke Detector .. 42
 3.3: Heat Detector ... 43
 3.4: Monitor Module .. 44
 3.5: Control Module ... 44
 3.6: Panel Input ... 46
 3.7: Panel Output ... 46
 3.8: General Zone ... 47
 3.9: Logic Zone .. 47
 3.10: Releasing Zone .. 48
 3.11: Special Function Zone .. 48
 3.12: Trouble Zone ... 49
 3.13: Annunciator ... 49

Section 4 Viewing and Printing History Information .. 51
 4.1: Events History ... 51
 4.2: Time and Date Range Selection for All Events ... 52
 4.3: Point Range Select for All Events in Range .. 53

Section 5 Printing Reports ... 55
 5.1: Printer Functions Screen ... 55
 5.2: Print Programming Menu Screen .. 56
 5.3: Print Programming Menu Screen (2) .. 58
 5.4: Active Points Report Screen ... 59
 5.5: Installed Points Report Screen .. 59

Appendix A Software Type ID Codes ... 63

Appendix B Releasing Zones ... 67
Section 1 General Information

1.1 About This Manual

The following graphics appear in the manual to indicate a caution, a warning, or a note.

⚠️ CAUTION: Information about procedures that could cause programming errors, runtime errors, or equipment damage.

⚠️ WARNING: Information about procedures that could cause irreversible damage to the control panel, irreversible loss of programming data or personal injury.

Note: Information that highlights an important part of the preceding or subsequent text or illustration.

1.2 Supplemental Information

The table below provides a list of document sources (manuals) containing additional information regarding the IFC-3030 and optional peripherals.

<table>
<thead>
<tr>
<th>For information on…</th>
<th>Refer to…</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>IFC-3030 Installation Manual</td>
<td>52024</td>
</tr>
<tr>
<td>Programming</td>
<td>IFC-3030 Programming Manual</td>
<td>52025</td>
</tr>
<tr>
<td>Main Power Supply</td>
<td>AMPS-24/E</td>
<td>51907</td>
</tr>
<tr>
<td>SLC Wiring Instructions</td>
<td>Johnson Controls SLC Wiring Manual</td>
<td>51870</td>
</tr>
<tr>
<td>Off-line programming utility</td>
<td>VeriFire™ Tools CD help file</td>
<td>JVERIFIRE-TCD</td>
</tr>
<tr>
<td>Compatible Devices</td>
<td>Device Compatibility Document</td>
<td>51922</td>
</tr>
<tr>
<td></td>
<td>Compatible Listings Chart</td>
<td>51364</td>
</tr>
<tr>
<td></td>
<td>Device Compatibility Technical Bulletin</td>
<td>LIT-445180</td>
</tr>
<tr>
<td>Annunciators</td>
<td>Annunciator Control System</td>
<td>15842</td>
</tr>
<tr>
<td></td>
<td>Annunciator Fixed Module</td>
<td>15048</td>
</tr>
<tr>
<td></td>
<td>ACM-8R Annunciator Control Module</td>
<td>15342</td>
</tr>
<tr>
<td></td>
<td>ACM-8R Annunciator Control Module Technical Bulletin</td>
<td>LIT-445125</td>
</tr>
<tr>
<td></td>
<td>LCD-80 Manual</td>
<td>15037</td>
</tr>
<tr>
<td></td>
<td>LCD-80 Liquid Crystal Display Technical Bulletin</td>
<td>LIT-445151</td>
</tr>
<tr>
<td></td>
<td>LCD-160 Liquid Crystal Display Manual</td>
<td>51850</td>
</tr>
<tr>
<td></td>
<td>LDM Series Lamp Driver Annunciator</td>
<td>15885</td>
</tr>
<tr>
<td></td>
<td>LDM Lamp Driver Modules Technical Bulletin</td>
<td>LIT-445161</td>
</tr>
<tr>
<td></td>
<td>SCS Smoke Control System</td>
<td>15712</td>
</tr>
<tr>
<td></td>
<td>JNCA Network Control Annunciator</td>
<td>51868</td>
</tr>
<tr>
<td></td>
<td>RPT-485W/RPT-485WF EIA-485 Annunciator Loop Repeater</td>
<td>15640</td>
</tr>
<tr>
<td>Auxiliary Power Supply,Charger</td>
<td>ACPS-2406 Installation Manual</td>
<td>51304</td>
</tr>
<tr>
<td></td>
<td>APS-6R Instruction Manual</td>
<td>50702</td>
</tr>
<tr>
<td></td>
<td>APS-6R Auxiliary Power Supply Technical Bulletin</td>
<td>LIT-445205</td>
</tr>
<tr>
<td></td>
<td>CHG-120 Battery Charger Manual</td>
<td>50641</td>
</tr>
<tr>
<td></td>
<td>CHG-120 Battery Charger Technical Bulletin</td>
<td>LIT-445210</td>
</tr>
<tr>
<td></td>
<td>FCPS-24 Field Charger/Power Supply Manual</td>
<td>50059</td>
</tr>
<tr>
<td></td>
<td>Field Charger/Power Supply FCPS-24 Technical Bulletin</td>
<td>LIT-445111</td>
</tr>
<tr>
<td>Cabinets & Chassis</td>
<td>CAB-3/CAB-4 Series Cabinet Installation Instructions</td>
<td>15330</td>
</tr>
<tr>
<td>Transponders & Transmitters</td>
<td>DPI-232 Manual</td>
<td>51499</td>
</tr>
<tr>
<td></td>
<td>RFX Wireless Transmitter Manual</td>
<td>51012</td>
</tr>
<tr>
<td></td>
<td>TM-4 Instructions (Reverse Polarity Transmitter)</td>
<td>51490</td>
</tr>
<tr>
<td></td>
<td>UDAT Manual (Universal Digital Alarm Communicator/Transmitter)</td>
<td>50050</td>
</tr>
<tr>
<td></td>
<td>XP Transponders</td>
<td>15888</td>
</tr>
<tr>
<td></td>
<td>XP Transponder Technical Bulletin</td>
<td>LIT-448180</td>
</tr>
<tr>
<td></td>
<td>XP5 Series Manual</td>
<td>50786</td>
</tr>
<tr>
<td></td>
<td>XP5 Series Transponders Technical Bulletin</td>
<td>LIT-445230</td>
</tr>
</tbody>
</table>

Table 1.1 Supplemental Documentation (1 of 2)
1.3 Introduction to the Control Panel

The IFC-3030 is an intelligent Fire Alarm Control Panel (FACP) with features suitable for most applications. The JCPU-3030 comes with a front display/keypad option, which allows programming and viewing options at the panel.

There are two basic configuration options for the IFC-3030. It can be ordered with:

- a front display/keypad, which allows programming and viewing options at the panel, or
- no display keypad.

This manual gives instructions using the front display/keypad.

Displayless Mode

When there is no keypad/display at the IFC-3030, the panel is controlled by remote annunciators. VeriFire™ Tools programming is required. The displayless panel has four buttons on its circuit board that are service-level switches for local operation should it become necessary. They are the only buttons, and are clearly marked with ACK for Acknowledge, SIGSIL for Signal Silence, SYSRST for System Reset, and LAMP TEST. These buttons are mainly for installer use: the operator should utilize a remote annunciator for these functions, if possible. The status indicator LEDs on the circuit board are the same as on the display/keypad (refer to "The Display/Keypad" on page 10 of this manual).

Refer to VeriFire™ Tools or the JNCA manual for information on programming without an IFC-3030 display/keypad.

1.4 Operating Features

- Alarm Verification selection, to reduce unwanted alarms
- Positive Alarm Sequence (PAS) and Presignal per NFPA 72
- Silence Inhibit timer and Auto Silence timer for Notification Appliance Circuits (NACs)
- March time/Temporal code for Panel Circuit modules
- Programmable Signal Silence, System Reset, and Alarm Activate functions through monitor modules
- Automatic time-of-day and day-of-week control functions, with holiday option
- AWACS (Advanced Warning Addressable Combustion Sensing) with nine field-adjustable Pre-Alarm levels with programmable Control-By-Event (CBE)
- Operate automatic smoke or heat detector sounder/relay base on action Pre-Alarm level, with general evacuation on alarm level
- Security alarm point option with separate audible signal code
- Centralized voice paging and audible alarm signaling options
• Programmable Control-By-Event control of outputs from individual alarm or supervisory addressable devices
• Networks with other FACPs and equipment for large applications
• Automatic detector sensitivity adjustments based on programmable building occupancy schedules
1.4.1 The Display/Keypad

The display/keypad provides an easy-to-use keypad and large LCD (liquid crystal display) that simplifies the programming process.

The Liquid Crystal Display

The display is 40 characters wide by 16 lines. It displays all programming screens, as well as events, history, device and other information.

Fields may be entered or changed and commands may be issued on the display using the keypad.

The Keypad

The keypad consists of several types of keys: alphanumerics, special function keys, soft keys, and fixed function keys.

Note: Key functions are as described below unless the Local Control option is disabled, or the Display and Control Center (DCC) option is enabled and the DCC is at another location. When the Local Control option is disabled, the panel does not have local control of the Signal Silence,
System Reset, and Drill Fixed Function keys, or the SIGNAL SILENCE, SYSTEM RESET, and ACKNOWLEDGE soft keys. These functions must be performed by a remote device preprogrammed for this purpose. When this panel is not the DCC on a network, permission must be granted from the DCC before Signal Silence, System Reset, Acknowledge or Drill can be performed at this panel. Pressing one of these keys will automatically send a permission request to the DCC.

Keypad

The alphanumeric portion of the keypad is in standard QWERTY format. This keypad is functional mainly when an entry is requested by the system. Otherwise, pressing the keys results in no entry.

Soft Keys

The ten keys to the right and left of the display function to select commands that appear on the display. Each screen has different information, and each key changes function to suit the screen. Beneath each screen in this manual is a description of the function of each soft key.

Fixed Function Keys

The eight keys aligned along the upper right edge of the keypad/display are fixed function keys.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE ALARM SCROLL/DISPLAY</td>
<td>Scroll through a list of events of these types, each of which will appear on the display once the associated button is pushed.</td>
</tr>
<tr>
<td>SECURITY SCROLL/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>SUPERVISORY SCROLL/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>TROUBLE SCROLL/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>OTHER EVENT SCROLL/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>SIGNAL SILENCE</td>
<td>Press this key to turn off all control modules and panel output circuits that have been programmed as silenceable. Signal Silence is disabled while the Silence Inhibit Timer is in effect, or when a device with a Waterflow type code initiates a fire alarm.</td>
</tr>
<tr>
<td>DRILL HOLD 2 SEC.</td>
<td>Press this key, holding it down for 2 seconds, to activate all silenceable fire output circuits.</td>
</tr>
<tr>
<td>SYSTEM RESET</td>
<td>Press this key to clear all latched alarms and other events as well as turn off event LEDs. If alarms or other off-normal events exist after reset, they will resound the system and relight the LEDs. Unacknowledged events will not prevent reset from functioning unless the panel is programmed for Receive Mode (refer to the note on page 22). The SYSTEM RESET key will not function if the programmable Silence Inhibit Timer is running. The System Reset key will not immediately silence active outputs. If the Control-by-event programming conditions for the output are not met after reset, the output will deactivate. (Typically 30 seconds local, 60 seconds network.)</td>
</tr>
</tbody>
</table>

Special Function Keys

To the right of the QWERTY keypad are special function keys.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow Keys</td>
<td>Pressing these keys navigates through the programming fields on a display screen by advancing or reversing the cursor position.</td>
</tr>
<tr>
<td>Enter</td>
<td>Pressing this key navigates through the programming fields on a display screen by advancing the cursor.</td>
</tr>
<tr>
<td>Esc</td>
<td>Press this key once to leave the current field without saving the entry. Press this key twice in succession to discard any changes made on the screen and exit to the previous screen.</td>
</tr>
<tr>
<td>DISABLE/ENABLE</td>
<td>For future use. No function at this time.</td>
</tr>
<tr>
<td>PRINT SCREEN</td>
<td>Press this key to print what is displayed on the display screen.</td>
</tr>
<tr>
<td>LAMP TEST</td>
<td>Press this key to test the LED indicators on the left of the keypad, the panel circuit LEDs, and the piezo. Pressing the key longer than 5 seconds will display firmware version numbers on the display screen.</td>
</tr>
<tr>
<td>F1</td>
<td>For future use. No function at this time.</td>
</tr>
<tr>
<td>NEXT SELECTION/PREVIOUS SELECTION</td>
<td>Use these keys to scroll through the list of possibilities in a data field on the display screen.</td>
</tr>
</tbody>
</table>
RECALL LAST ENTRY - For future use. No function at this time.
INCREMENT NUMBER - For future use. No function at this time.

LED Indicators
There are ten labeled LEDs aligned along the left edge of the keypad. They light to annunciate certain conditions, as described in Table 1.2 below.

<table>
<thead>
<tr>
<th>LED INDICATOR</th>
<th>COLOR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>Illuminates when AC power is within normal operating limits.</td>
</tr>
<tr>
<td>Fire Alarm</td>
<td>Red</td>
<td>Illuminates when at least one fire alarm event exists. It will flash if any of these events are unacknowledged.</td>
</tr>
<tr>
<td>Pre-alarm</td>
<td>Red</td>
<td>Illuminates when at least one pre-alarm event exists. It will flash if any of these events are unacknowledged.</td>
</tr>
<tr>
<td>Security</td>
<td>Blue</td>
<td>Illuminates when at least one security event exists. It will flash if any of these events are unacknowledged.</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Yellow</td>
<td>Illuminates when at least one supervisory event exists. It will flash if any of these events are unacknowledged.</td>
</tr>
<tr>
<td>System Trouble</td>
<td>Yellow</td>
<td>Illuminates when at least one trouble event exists. It will flash if any of these events are unacknowledged.</td>
</tr>
<tr>
<td>Other Event</td>
<td>Yellow</td>
<td>Illuminates for any category of event not listed above. It will flash if any of these events are unacknowledged.</td>
</tr>
<tr>
<td>Signals Silenced</td>
<td>Yellow</td>
<td>Illuminates if the IFC-3030 Notification Appliances have been silenced. It flashes if some but not all of the IFC-3030 NACs have been silenced.</td>
</tr>
<tr>
<td>Point Disabled</td>
<td>Yellow</td>
<td>Illuminates when at least one device has been disabled. It will flash until all disabled points have been acknowledged.</td>
</tr>
<tr>
<td>CPU Failure</td>
<td>Yellow</td>
<td>Illuminates if there is an abnormal hardware or software condition. Contact technical support. The panel is out of service when this LED is illuminated or flashing.</td>
</tr>
</tbody>
</table>

Table 1.2 LED Indicators

1.5 Message Formats
This section describes the formats for system normal, device events and system events screens. For a definition of these types of events, as well as instructions for dealing with them, refer to Section 2, "Operation of the Control Panel" in this manual.

1.5.1 System Normal Screen
The System Normal message appears at the top of the display when no off-normal events exist. It consists of two lines, each 40 characters long. Line one is a custom network message. Line 2 is a standard message giving the System Normal message, the time, day of the week, and date. The Main Menu is selectable using the lower right soft key.

Line 5 indicates the current time and date.
Message Formats

General Information

Figure 1.2 System Normal Screen

A custom graphic may be displayed below the system normal message: the graphic must be entered using VeriFire™ Tools. The text “Main Menu” will overlay the graphic, if it extends into the last line of the display.

1.5.2 Event Reporting Format

The message formats used for event reporting appear at the top of the display, replacing the System Normal message. There are two basic types of message formats: point event formats, which are generated from changes in the state of SLC and panel devices, and system event formats, which are generated from system errors and troubles.

Point Events Format

When a change of state occurs to an SLC or panel point device, a message is generated to the panel that displays on the top of the LCD screen, and soft keys display available functions that may be used to handle the event. The top four lines contain the event and point information. Event counts display in the next three lines, the current time and soft key information appears after the event counts.

The format of the first line will vary slightly as follows, depending on the type of event:

<table>
<thead>
<tr>
<th>Event Format (not trouble or pre-alarm)</th>
<th>Line 1</th>
<th>Displays the type of event, and whether it has been acknowledged or cleared.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Format (trouble)</td>
<td>Line 1</td>
<td>Displays TROUBLE, the type of trouble, and whether it has been acknowledged or cleared.</td>
</tr>
<tr>
<td>Event Format (pre-alarm)</td>
<td>Line 1</td>
<td>Displays PREALARM, the sensitivity reading and whether it has been acknowledged or cleared.</td>
</tr>
</tbody>
</table>
The second, third and fourth lines always contain the same device information, as follows:

Line 2 - Displays the custom label and the extended label.

Line 3 - Displays the primary zone label, the primary zone number, and the software Type ID.

Line 4 - Displays event time, event date and device address.

The point event example screen below shows a trouble condition that has been generated by the detector on loop 3, address 2.

![Figure 1.3 Point Event Display Example](image)

The event counts display shows the counts for outstanding events. The date in line eight gives the current time. The soft keys may be used to deal with the event; their functions are described in the Operation section of this manual.

System Events Format

When a system trouble occurs, a message is generated to the panel that displays on the top of the LCD screen, and soft keys display available functions that may be used to handle the event.

The top four lines contain event information, and are formatted as follows:

Line 1 - Displays TROUBLE and whether it has been acknowledged or cleared.

Line 2 - Displays trouble type.

Line 3 - Displays custom message.

Line 4 - Displays event time, date and device address.

The system trouble event example screen below shows an annunciator trouble condition.
1.6 Navigating Menu and Programming Screens

The Main Menu (refer to Figure 1.5) leads to screens with various menu options. Choices may be made from the menu screens by pressing the soft key closest to the menu option.

Field information may be added/modified using the keypad and special function keys.

Arrow keys on the keypad can be used to navigate between fields on a screen if there are no soft keys to select the fields.

Pressing a BACK soft key on a screen returns the programmer to the previous screen without saving the information entered.

Pressing an ACCEPT soft key will save information entered on the screen. It may also return to the previous screen and/or perform other functions as described in the soft key section for each screen.

When the panel can not read a specified point (that is, if the point entered on the screen for processing does not exist in the panel’s programming) it will display an error screen for several seconds, then return to the screen where the address was entered. The user must check his input and investigate the state of the point.

1.7 The Main Menu

The Main Menu screen is the means by which the programmer can access displays, history information, printing and programming menus. This screen is accessible from the System Normal Screen (Refer to Figure 1.2), and from most other screens by pressing the BACK soft key until it displays.
Soft Keys
Pressing the soft keys brings the user to the screens described below.

1.7.1 Event Counts Display

Pressing the soft key to the left of the Event Counts Display message on the Main Menu brings up the Event Counts screen. This screen will automatically display if an off-normal event requiring acknowledgement occurs, unless the panel is in programming mode. Fire alarm events will display even in programming mode.

Lines six and seven display current counts of off-normal events in six categories. The counts include both acknowledged and unacknowledged events.

Figure 1.5 Main Menu Screen

Figure 1.6 Events Count Display Screen

Soft Keys

ACKNOWLEDGE FIRE ALARM - Press this key to acknowledge an event. The command will read ACKNOWLEDGE FIRE ALARM if the event is a fire alarm. It will readACKNOWLEDGE if the event is any other type. The command will not display if there are no events to acknowledge.

MORE INFORMATION - Press this key to go to the MORE INFORMATION screen, described in Section 1.7.2 below. This button will not display if no off-normal events exist.
PROGRAM/ALTER STATUS - Press this key to go to the PROGRAM/ALTER STATUS screen, which also can be reached from the main menu. This screen will require a password. For programming instructions, refer to the IFC-3030 Programming Manual.

SIGNAL SILENCE - Press this key to silence all IFC-3030 outputs programmed as silenceable.

SYSTEM RESET - Press this key to reset the system.

1.7.2 More Information

Pressing the More Information soft key displays a screen that contains additional information about the event shown in the top four lines.

Display
Lines 1 through 4 - Event information
Line 5 - Screen title
Lines 6 through 9 - The Custom Action Message programmed for the point in alarm
Line 10 - blank
Line 11 and 14 - These lines exist only for smoke/heat detectors. They do not display for wireless smoke detectors.

Line 11
VALUES:
The screen displays the Alarm and Prealarm values that are in effect when more information is requested. For example, if occupied settings are in effect, occupied values will display.
121% OF ALARM - This field gives the detector reading as it relates to its preprogrammed alarm level value (indicated in the next line on the screen). The example above shows the detector exceeding the alarm level by 21%.
Note: For Beam detectors in CLIP mode, the alarm value will always equal zero (0)% when it is not in alarm or 100% when it is in alarm.
145% OF PREALARM - This field gives the detector reading as it relates to its preprogrammed prealarm level value (indicated in the next line on the screen). The example above shows the detector exceeding the prealarm level by 45%.

Line 12
The screen displays the Alarm and Prealarm levels that are in effect when more information is requested. For example, if unoccupied settings are in effect, they will display.
ALARM: 6 = 1.66 % - Six is the preprogrammed alarm level value for this detector: its value is 1.66%, indicating the percent per foot obscuration value assigned to level 6.
PREALARM: 3 = 0.47 % - Three is the preprogrammed alarm level value for this detector: its value is 0.47%, indicating the percent per foot obscuration value assigned to level 3.

Figure 1.7 More Information Screen
ACTION/STATUS: NONE/VERY CLEAN - This displays the maintenance status of the device. The message that appears in this field depends on the drift compensation value. A detector will automatically compensate for environmental contaminants and other factors over time, until the tolerance value has been exceeded. The FACP will signal a trouble condition when this level has been reached. Refer to the following table for messages and required action.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace/Malfunction</td>
<td>Replace the defective detector. The detector may not operate properly.</td>
</tr>
<tr>
<td>None/Very Clean</td>
<td>No action necessary. The detector readings are near ideal.</td>
</tr>
<tr>
<td>None/Clean</td>
<td>No action necessary. Although not ideal, the detector will activate at the selected sensitivity level.</td>
</tr>
<tr>
<td>None/Fairly Clean</td>
<td>No action necessary. The detector will activate at the selected sensitivity level.</td>
</tr>
<tr>
<td>Needs Cleaning</td>
<td>Clean the detector soon. The detector may cause a false alarm because it has reached the drift compensation tolerance value.</td>
</tr>
<tr>
<td>Needs Immediate Cleaning</td>
<td>Clean immediately! The detector is a false alarm risk. The drift compensation tolerance value has been exceeded.</td>
</tr>
</tbody>
</table>

Line 13 does not display for Acclimate detectors.

Line 14

PEAKS: 56% - This value represents the highest percent per foot obscuration reading taken by this detector. It can be a historical figure, and does not necessarily represent the highest reading for this particular alarm. Re-initializing the detector would reset this value to zero.

VERIFY COUNT: 02 - This displays the number of times the detector has gone into alarm. This count aids in differentiating false alarms from actual alarms by showing repeated alarm events that have come into the device. In this example, the detector has gone into alarm two times since the verification count was begun. The FACP will signal a trouble condition when the verify count is exceeded.

CO-OP: D100,158 - Indicates the address(es) of any detector(s) linked with the detector that’s in alarm for Co-operative Multi-alarm Sensing. This field does not display for Acclimate detectors, Beam detectors or Heat detectors.

Line 15 - The current time and date are displayed in this line.

Line 16

BACK - Press to return to the previous screen.

1.7.3 Multiple Event List

Pressing the Multiple Event List soft key shows off-normal events simultaneously in groups of eight. One event is shown at the top, and seven are shown in the list below it. The list will consist of the events immediately following the event at the top, with the priority of event types determined by the programmed Event Ordering setting (USA or Canada).

<table>
<thead>
<tr>
<th>USA Event Order</th>
<th>Canada Event Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>Fire</td>
</tr>
<tr>
<td>Security</td>
<td>Supervisory</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Trouble</td>
</tr>
<tr>
<td>Trouble</td>
<td>Prealarm</td>
</tr>
<tr>
<td>Prealarm</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>

- Using the Next Selection/Previous Selection special function keys to scroll through the list will replace the event at the top of the screen with the first event in the series displayed below it.
- Using the Up/Down arrow keys to scroll through the list will not replace the event at the top of the screen: pressing the arrow keys will scroll a cursor through the seven events below without
changing what is displayed at the top. The arrows will scroll through the list of events sequentially, but will skip the event at the top.

- Pressing Enter while the cursor is present will cause the event selected by the cursor to move to the top of the screen, and the list will reflect the events immediately following it.
- Pressing one of the Scroll Display fixed function keys will cause the first event of that type (e.g., alarm, trouble, etc.) to display at the top, and subsequent events of that type to display in sequence below it. Press the key again to begin scrolling. If there are no events of the type denoted by the Scroll Display key, pressing the key will have no effect.

![Figure 1.8 Multiple Event List Screen](image)

Soft Key

First Event - Press this soft key to return the first event in the event ordering sequence to the top of the screen if scrolling has placed it elsewhere.

Note: If an unacknowledged event occurs while the Multiple Event list is displayed:

- For USA event ordering - the Event Count Screen will appear with the Acknowledge button only. Acknowledging the event(s) will bring the Multiple Event list back up.
- For Canadian event ordering - the Multiple Event list screen will display the unacknowledged event at the top.

1.7.4 History Display (History Select Screen)

The History Select screen allows the user to select a type of history file to view, and to set time/date or point range viewing parameters. The particular menu items will not appear on the History
Display screen if no associated events are in the queue.

Figure 1.9 History Display Select Screen

Soft Keys

- **ALL EVENTS, ALARMS ONLY, TROUBLES ONLY, SUPERVISORY ONLY, AND SECURITY/OTHERS** - Pushing the associated soft key selects the type of history to be viewed.
- **TIME/DATE INTERVAL** - Sets a time/date interval of events to be displayed.
- **POINT RANGE** - Sets a range of points for which events will be displayed.

Refer to the section "Viewing and Printing History Information" on page 51 for a full description of History Select.

1.7.5 Read Status

Pressing the Read Status soft key brings up screens to view the present status of points, zones, and other system information. Refer to the section "Read Status" on page 41 for a full description of Read Status.

1.7.6 Program/Alter Status

Pressing the Program/Alter Status soft key brings up screens for panel programming, point programming, autoprogramming, clear programming, altering the status of points, walk test, and other information. A password is required. Refer to this panel’s programming manual for information on these functions.

1.7.7 Printer Functions

Pressing the Printer Functions soft key brings up screens to print reports. Refer to the section "Printing Reports" on page 55 for descriptions and illustrations. This key will appear only if a printer has been selected through programming. Refer to this panel’s programming manual for information on printer selection.
Section 2 Operation of the Control Panel

2.1 Overview

The control panel periodically checks for events. An event can be any change in the status of a device, a transfer of information between a device and the FACP, or a transfer of information between two devices. Some events are considered background events and are not seen by the user. The events that are of primary concern to the operator are those identified as off-normal events. An off-normal event is an event which indicates activity or change in condition that requires the attention and/or response of an operator. Examples of possible off-normal events are:

- Activation or change in condition of a monitoring device such as a detector or module
- System troubles, such as battery problems, device supervision problems, etc.

When there are no off-normal events, the panel displays the System Normal screen (refer to Figure 2.1). When there is an off-normal event, the panel will display it (for event formats, refer to "Event Reporting Format" on page 13). The action required will vary according to the type of event.

2.1.1 System Normal

The system operates in System Normal mode when no alarms or troubles exist. In this mode, the control panel displays a System Normal message as follows:

![Figure 2.1 System Normal Screen](image)

The control panel performs the following functions at regular intervals:

- Polls all SLC devices and Panel Circuits to check for valid replies, alarms, troubles, circuit integrity, and supervisory signals, etc.
- Checks power supply troubles and batteries
- Refreshes the panel display and updates time
- Scans for any panel screen, keypad, and Control Key entries
- Performs a detector automatic test operation
- Tests system memory
- Monitors for microcontroller failure

No action is required of the operator when the panel is operating in Normal mode.

2.1.2 Acknowledging an Event

When the panel detects an off-normal event and the information is displayed on-screen, one of the
soft keys displayed on the screen is **ACKNOWLEDGE**. Use this key to respond to new alarm or trouble signals. When this key is pressed, the control panel does the following:

- It silences the piezo sounder on the panel if it is enabled
- It transfers the event to the history buffer
- If the panel is networked, it will send a network message.

There are two types of acknowledge: point and block. Point acknowledge is for fire alarms: fire alarms are acknowledged one at a time when the Acknowledge soft key is pressed. Block acknowledge is for all other types of off-normal events: these events are acknowledged all at the same time, with a single stroke to the Acknowledge soft key.

Note: If Local Control is disabled, acknowledgements can not be made by pressing the **ACKNOWLEDGE** soft key on the panel display. Events must be acknowledged from a preprogrammed remote location. When DCC (Display and Control Center) participation is enabled, panel acknowledgement can be performed when it is the DCC. When it is not, permission must be granted from the DCC before the panel can make an acknowledgement. Pressing the **ACKNOWLEDGE** soft key will automatically request permission from the DCC.

Note: If the panel is programmed for Receive Mode, events and the clearing of events must be handled one at a time: each event must be acknowledged, and each clear (whether the clear occurs automatically or as the result of a panel reset) must be acknowledged.
2.2 Fire Alarm Event

2.2.1 How the Control Panel Indicates a Fire Alarm

When an initiating device (detector or monitor module) activates, the control panel does the following:

- Produces a steady audible tone (if the piezo is enabled)
- Activates the System Alarm relay (TB4). It will also activate the Security (TB1) and Supervisory (TB2) relays if their switches have been configured for alarm
- Flashes the FIRE ALARM LED
- Displays FIRE ALARM in the upper left corner of the display, a Type Code that indicates the type of device that activated the fire alarm, and other information specific to the device. The message occupies the top four lines of the screen, replacing the System Normal message as shown in Figure 2.2 below. Refer to “Point Events Format” on page 13 for a full description of each message field
- Sends an Alarm message to the History buffer and installed printer and annunciators
- Latches the control panel in alarm. (You cannot return the control panel to normal operation until you correct the alarm condition and reset the control panel)
- Initiates any Control-By-Event actions
- Starts timers (such as Silence Inhibit, Auto Silence)
- Activates the general alarm zone (Z000)

Note: If a monitor module programmed with a WATERFLOW Type Code initiates a fire alarm, the control panel disables the SIGNAL SILENCE key and the Auto Silence Timer.

Figure 2.2 Fire Alarm Message Display Example

2.2.2 How to Respond to a Fire Alarm

If the control panel indicates a fire alarm, the operator can do the following:

- To silence the panel sounder:
 Press the ACKNOWLEDGE soft key. The local sounder will silence and the FIRE ALARM LED will change from flashing to steady. The control panel will send an acknowledge message to the panel display, history buffer, installed printers and annunciators.
- To silence any activated outputs that are programmed as silenceable:
 Press the SIGNAL SILENCE soft key. SIGNALS SILENCED LED light steady. The control panel sends a Signal Silenced message to the History buffer, installed printers and annunciators.
1. Check the Alarm message for its location and type. Press the MORE INFORMATION soft key to display the MORE INFORMATION screen and view additional information on the device and possibly preprogrammed text for recommended action. (Refer to Figure 1.7 on page 17 for an example of the this screen and an explanation of its fields.)

2. Correct the condition causing the alarm.

3. When the alarm condition is corrected, press the SYSTEM RESET soft key to return the control panel to normal operation (indicated by the “System Normal” message). The control panel sends a “System Normal” message to the panel display, History buffer and installed printer. The soft key PROGRAM/ALTER STATUS is also displayed on this screen. A password is required to enter these menus, which are described in the IFC-3030 Programming manual.

2.2.3 Interpreting Type ID Codes

The Type ID code that displays in the fire alarm message is related to the type and function of the point that initiates the fire alarm. For example, a monitor module with a PULL STATION Type ID code means that the monitor module connects to a manual pull station. If the Type ID code is unfamiliar, refer to "Software Type ID Codes" on page 63. This appendix is an alphabetical list of Type ID codes with an explanation of each.
2.3 System or Point Trouble Event

2.3.1 How the Control Panel Indicates a System or Point Trouble

A system or point trouble occurs when the control panel detects an electrical or mechanical fault. The panel will react differently depending on whether or not there are higher priority unacknowledged events.

When no higher priority unacknowledged events are exist, the control panel:

- Produces a pulsed audible tone (if the piezo is enabled)
- Activates the Trouble relay (TB3)
- Flashes the SYSTEM TROUBLE LED
- Displays a Type Code that indicates the type of device with a trouble (if a point trouble)
- Displays TROUBLE in the upper left corner of the panel display and, if a point trouble, the type of trouble and information specific to the device. (A system and a point trouble message are shown in the figures below)
- Sends a Trouble message to the history buffer, installed printer and annunciators

When an unacknowledged event with a higher priority exists, the control panel retains the indications of the higher priority event (the message, lit LED, audible tone, etc.) while activating the Trouble relay, flashing the SYSTEM TROUBLE LED, and sending a Trouble message to the history buffer, installed printer and annunciators.

A system trouble message is shown in Figure 2.3, and a point trouble is shown in Figure 2.4. Refer to “Event Reporting Format” on page 13 for identification of each message field.

![Figure 2.3 Sample Message for System Trouble](image-url)
2.3.2 How to Respond to a System or Point Trouble

If the control panel indicates a trouble, the operator can do the following:

1. Press the **ACKNOWLEDGE** soft key to silence the panel sounder and switch the **SYSTEM TROUBLE** LED from flashing to steady—regardless of the number of troubles, alarms, security and supervisory signals.

 The control panel sends an acknowledge message to the History buffer, installed printers and annunciators.

2. Check the trouble message for an indication of the trouble.
 - Refer to Table 2.1 or Table 2.2 below for point and system trouble explanations, if necessary.
 - Press the **MORE INFORMATION** soft key to display the **MORE INFORMATION** screen and view additional information on the device and possibly preprogrammed text for recommended action. (Refer to Figure 1.7 on page 17 for an example of the this screen and an explanation of its fields.)

3. Correct the condition causing the trouble. If the trouble clears, the control panel sends a Clear Trouble message to the History buffer, installed printers and annunciators.

If all troubles clear and no supervisory signals or fire alarms exist, the control panel does the following:

- Returns to Normal operation (indicated by the “System Normal” message)
- Sends a “System Normal” message to the panel display, History buffer, installed printers and annunciators
- Restores troubles automatically - even if troubles are not acknowledged

The soft key **PROGRAM/ALTER STATUS** is also displayed on this screen. A password is required to enter these menus, which are described in this panel’s programming manual.

2.3.3 Trouble Types

There are a variety of point or system trouble types that may appear in the trouble message. The tables below give lists of the troubles and indications of their cause.

Point (Device) Troubles

A message from the “Trouble Type” column in Table 2.1 will appear in the upper right corner of the panel display when a point (device) trouble occurs. Use this table to help determine what the trouble is.
<table>
<thead>
<tr>
<th>TROUBLE TYPE</th>
<th>TROUBLE DESCRIPTION</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC FAILURE</td>
<td>The main or auxiliary power supply has lost AC power.</td>
<td>Determine whether there is an AC power loss or whether the power supply and wiring is correct.</td>
</tr>
<tr>
<td>ALIGNMENT MODE</td>
<td>A beam detector is in configuration mode.</td>
<td>No action is necessary, as the trouble will clear when the configuration is complete. However, the detector will not detect a fire while this trouble exists.</td>
</tr>
<tr>
<td>BATTERY HIGH</td>
<td>The power supply’s battery charge is too high.</td>
<td>Check the batteries for problems. Replace batteries if necessary.</td>
</tr>
<tr>
<td>BATTERY LOW</td>
<td>The power supply’s battery charge is low, or the RFX device’s battery charge is low.</td>
<td>Check the batteries for problems. Replace batteries if necessary.</td>
</tr>
<tr>
<td>BEAM BLOCKED</td>
<td>Something has come between the detector’s beam and its reflector.</td>
<td>Investigate and clear the blockage.</td>
</tr>
<tr>
<td>BRAND MISMATCH</td>
<td>The brand of this SLC device is incompatible with this FACP system.</td>
<td>Replace with compatible device.</td>
</tr>
<tr>
<td>CHARGER FAULT</td>
<td>The power supply’s battery charger is not working properly.</td>
<td>Correct the fault.</td>
</tr>
<tr>
<td>DET FAILED TEST</td>
<td>This detector has failed the FACP’s periodic detector test for alarm capabilities.</td>
<td>The detector should be removed and replaced by an authorized service representative.</td>
</tr>
<tr>
<td>DUAL ADDRESS</td>
<td>There is more than one device of a single type (detector or module) with the same SLC address. A detector and a module can share the same address on an SLC, but two detectors, or two modules, can not. Note that some addressable devices (e.g. certain power supplies, XPIQs and RFXs) may not appear to be detectors or modules, but are addressed on the SLC as such.</td>
<td>Redress the incorrect device.</td>
</tr>
<tr>
<td>GENERAL TROUBLE</td>
<td>The power supply is not working properly.</td>
<td>Check the battery for problems. Replace battery if necessary.</td>
</tr>
<tr>
<td>GROUND FAULT</td>
<td>There is a ground fault on the main or auxiliary power supply.</td>
<td>Correct the fault.</td>
</tr>
<tr>
<td>INITIALIZATION MODE</td>
<td>A beam detector is running through its initialization sequence.</td>
<td>The detector will not detect a fire until the initialization process is complete and this trouble has cleared.</td>
</tr>
<tr>
<td>INVALID RESPONSE</td>
<td>The device has returned a response to the panel that the panel did not expect.</td>
<td>Check the device for functionality, addressing and wiring.</td>
</tr>
<tr>
<td>LOW TEMPERATURE</td>
<td>The temperature read by a Heat+ or Acclimate™+ detector is too low.</td>
<td>Raise the heat in the area of the detector.</td>
</tr>
<tr>
<td>LOW THRESHOLD</td>
<td>The detector chamber reading is too low; the detector is not operating properly.</td>
<td>The detector must be removed and replaced by an authorized service representative.</td>
</tr>
<tr>
<td>MAINTENANCE REQ</td>
<td>The detector is dirty and needs cleaning</td>
<td>Clean the detector.</td>
</tr>
<tr>
<td>MAINT URGENT</td>
<td>The detector requires cleaning immediately. It is a false alarm risk.</td>
<td>Clean the detector immediately.</td>
</tr>
<tr>
<td>MISMAT HDWE TYPE</td>
<td>The programming information in the panel’s database for this device does not match the type of device at the address specified.</td>
<td>Correct programming.</td>
</tr>
<tr>
<td>MOD EXT PWR LOSS</td>
<td>The control module point has lost external power.</td>
<td>Determine whether there is a DC power loss.</td>
</tr>
<tr>
<td>NO ANSWER</td>
<td>The device (module or detector) is not responding to the poll. Either the device is not working or it is not connected properly.</td>
<td>Determine whether the device is functional, and connected and addressed properly on the SLC.</td>
</tr>
<tr>
<td>NORMAL</td>
<td>Indicates activated monitor module set to monitor trouble condition.</td>
<td>Correct trouble condition.</td>
</tr>
<tr>
<td>OPEN CIRCUIT</td>
<td>The module device has an open circuit on its supervised wiring.</td>
<td>Check the connections from the module to the input or output device to which it is wired.</td>
</tr>
</tbody>
</table>

Table 2.1 Point (Device) Troubles (1 of 2)
Operation of the Control Panel

System or Point Trouble Event

A message from the “Trouble Type” column in Table 2.2 will appear in the second line on the left of the panel display when a device trouble occurs. Use this table to help determine the cause of the trouble.

Table 2.1 Point (Device) Troubles (2 of 2)

<table>
<thead>
<tr>
<th>POINT TROUBLES</th>
<th>TROUBLE DESCRIPTION</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFX COMM LOSS</td>
<td>Communication has been lost with an RFX device</td>
<td>Check the RFX to determine the problem.</td>
</tr>
<tr>
<td>SECURITY TAMPER</td>
<td>An RFX device has been removed from its base.</td>
<td>Check the RFX device for tampering.</td>
</tr>
<tr>
<td>SHORT CIRCUIT</td>
<td>The module device has a short circuit on its supervised wiring.</td>
<td>Check the connections from the module to the input or output device to which it is wired.</td>
</tr>
<tr>
<td>VERIFY OVER MAX</td>
<td>This detector, or M302MJ or panel circuit monitor module, which has been programmed to participate in alarm verification, has gone into and come out of its programmed verification limit without going into alarm. Either something is wrong with the detector or there is a condition nearby (such as someone smoking) that causes it to go into verification frequently.</td>
<td>Check the detector and the conditions nearby to determine the problem.</td>
</tr>
</tbody>
</table>

System Troubles

A message from the “Trouble Type” column in Table 2.2 will appear in the second line on the left of the panel display when a device trouble occurs. Use this table to help determine the cause of the trouble.

Table 2.2 System Troubles (1 of 2)

<table>
<thead>
<tr>
<th>SYSTEM TROUBLES</th>
<th>TROUBLE MESSAGE TYPE</th>
<th>TROUBLE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV WALK TEST</td>
<td>There is an Advanced Walk Test in progress.</td>
<td></td>
</tr>
<tr>
<td>ANNUN x NO ANSWER</td>
<td>The annunciator at address x is not responding.</td>
<td></td>
</tr>
<tr>
<td>ANNUN x TROUBLE</td>
<td>The annunciator at address x is in trouble.</td>
<td></td>
</tr>
<tr>
<td>AUXILIARY TROUBLE</td>
<td>Auxiliary device connected to the IFC-3030 CPU at J5 is in trouble or cable is missing.</td>
<td></td>
</tr>
<tr>
<td>BASIC WALK TEST</td>
<td>A Basic Walk Test is in progress.</td>
<td></td>
</tr>
<tr>
<td>CORRUPT LOGIC EQUAT</td>
<td>The database that houses the panel’s logic equations is corrupt. It must be re-downloaded, or all programming must be cleared and re-entered.</td>
<td></td>
</tr>
<tr>
<td>DRILL INITIATED</td>
<td>Drill has been initiated locally.</td>
<td></td>
</tr>
<tr>
<td>DRILL RECEIVED</td>
<td>Drill has been initiated remotely.</td>
<td></td>
</tr>
<tr>
<td>EPROM ERROR</td>
<td>The application and/or boot code is corrupt. Service required.</td>
<td></td>
</tr>
<tr>
<td>EXTERNAL RAM ERROR</td>
<td>The external RAM test failed. Service required.</td>
<td></td>
</tr>
<tr>
<td>GROUND FAULT</td>
<td>A ground fault has occurred within the panel.</td>
<td></td>
</tr>
<tr>
<td>GROUND FAULT LOOP x</td>
<td>There is a ground fault on loop x.</td>
<td></td>
</tr>
<tr>
<td>INTERNAL RAM ERROR</td>
<td>The internal RAM test failed. Service required.</td>
<td></td>
</tr>
<tr>
<td>LOADING.NO SERVICE</td>
<td>A program or database download is in progress. The panel is NOT providing fire protection during the download. Proper authorities should be notified while a download is in progress so that other means of fire protection can be supplied.</td>
<td></td>
</tr>
<tr>
<td>LOOP x- x COMM FAILURE</td>
<td>Loops x and x are not responding. The LCM and LEM for those loops must be serviced.</td>
<td></td>
</tr>
<tr>
<td>MAN EVAC INITIATED</td>
<td>Local initiation of DRILL.</td>
<td></td>
</tr>
<tr>
<td>MAN EVAC RECEIVED</td>
<td>Network initiation of DRILL.</td>
<td></td>
</tr>
<tr>
<td>MANUAL MODE ENTERED</td>
<td>An annunciator has been placed in manual mode.</td>
<td></td>
</tr>
<tr>
<td>NCM COMM LOSS</td>
<td>Communication is lost between the JCPU-3030 and the NCM.</td>
<td></td>
</tr>
<tr>
<td>NETWORK FAIL PORT x</td>
<td>Communication lost between NCM Port x and corresponding node.</td>
<td></td>
</tr>
<tr>
<td>NETWORK INCOMPATIBILITY</td>
<td>An incompatible product exists on this network.</td>
<td></td>
</tr>
<tr>
<td>NFPA 24HR REMINDER</td>
<td>This message occurs every day at 11 am if any troubles exist.</td>
<td></td>
</tr>
<tr>
<td>NVRAM BATT TROUBLE</td>
<td>Battery backup and/or clock backup is low. Replace battery.</td>
<td></td>
</tr>
<tr>
<td>NO DEV. INST ON L1</td>
<td>No devices are installed on the system.</td>
<td></td>
</tr>
</tbody>
</table>
2.3.4 Interpreting Type ID Codes

The Type ID code that displays in a point trouble message is related to the type and function of the point that initiates the trouble. For example, a monitor module with a **PULL STATION** Type ID code means that the monitor module connects to a manual pull station. If the Type ID code is unfamiliar, refer to "Software Type ID Codes" on page 63. This appendix is an alphabetical list of Type ID codes and an explanation of each.

<table>
<thead>
<tr>
<th>TROUBLE MESSAGE TYPE</th>
<th>TROUBLE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO POWER SUPPLY INST</td>
<td>The AMPS-24 (main power supply) AC fail address (base plus one) has not been correctly entered or the loop is not installed. The AMPS-24 is not configured for “Trouble Reporting”. All four of the main power supply addresses are not programmed for MOD TYPE=Monitor and/or TYPE CODE LABEL=Power Monitor and/or FLASHSCAN=PS Mon.</td>
</tr>
<tr>
<td>PANEL DOOR OPEN</td>
<td>The panel door is open.</td>
</tr>
<tr>
<td>PRINTER OFF LINE</td>
<td>Communication loss with printer. Restore power and/or printer’s online status.</td>
</tr>
<tr>
<td>PRINTER PAPER OUT</td>
<td>Add paper.</td>
</tr>
<tr>
<td>PROGRAM CORRUPTED</td>
<td>The database that houses the panel's programming is corrupt. It must be re-downloaded, or all programming must be cleared and re-entered. Service required.</td>
</tr>
<tr>
<td>PROG MODE ACTIVATED</td>
<td>A user is currently using the panel's programming menus.</td>
</tr>
<tr>
<td>REMOTE DISPLAY x NO ANSWER</td>
<td>The remote display at address x is not responding.</td>
</tr>
<tr>
<td>REMOTE DISPLAY x TROUBLE</td>
<td>The remote display at address x is in trouble.</td>
</tr>
<tr>
<td>SELF TEST FAILED</td>
<td>Diagnostic test failed. Service required.</td>
</tr>
<tr>
<td>SOFTWARE MISMATCH</td>
<td>One or more LCM software revisions do not match other LCMs, and/or the NCM is not network version 5.0, or the LCD-160 is incompatible.</td>
</tr>
<tr>
<td>STYLE 4 SHORT x LOOP x</td>
<td>Service required.</td>
</tr>
<tr>
<td>STYLE 6 POS. LOOP x</td>
<td>There is a short circuit on the positive side of loop x. Style 6 and Style 7 are supervised methods of communicating with addressable devices. If the control panel detects a trouble (open or short), it will drive both ends of the loop, maintaining communication in an unsupervised method. The latching trouble will display on the panel as a Style 6 trouble until you correct the condition and press reset. Style 7 configuration of the SLC requires the use of M500XJ modules.</td>
</tr>
<tr>
<td>STYLE 6 NEG. LOOP x</td>
<td>There is a short circuit on the negative side of loop x. Style 6 and Style 7 are supervised methods of communicating with addressable devices. If the control panel detects a trouble (open or short), it will drive both ends of the loop, maintaining communication in an unsupervised method. The latching trouble will display on the panel as a Style 6 trouble until you correct the condition and press reset. Style 7 configuration of the SLC requires the use of M500XJ modules.</td>
</tr>
<tr>
<td>STYLE 6 SHORT LOOP x</td>
<td>Style 6 and Style 7 are supervised methods of communicating with addressable devices. If the control panel detects a trouble (open or short), it will drive both ends of the loop, maintaining communication in an unsupervised method. The latching trouble will display on the panel as a Style 6 trouble until you correct the condition and press reset. Style 7 configuration of the SLC requires the use of M500XJ modules.</td>
</tr>
<tr>
<td>SYSTEM INITIALIZATION</td>
<td>One or more devices (detectors or modules) can not report activation. This can occur following system startup, when exiting Walk Test, or following a device trouble of No Response.</td>
</tr>
</tbody>
</table>

Table 2.2 System Troubles (2 of 2)
2.4 Pre-alarm Event

The Pre-alarm function is used to receive an early warning of potential or incipient fire conditions. The Pre-alarm function provides one of two settings as follows:

- Alert – a non-latching setting that causes a Pre-alarm when a detector reaches its programmed Pre-alarm sensitivity threshold. Non-latching means the condition will automatically restore to normal once the detector’s sensitivity readings drop below its Pre-alarm threshold.

- Action – a latching setting that causes a Pre-alarm when a detector reaches its programmed Pre-alarm level. Latching means the condition will not restore itself to normal once the detector’s sensitivity readings drop below its Pre-alarm threshold. The panel must be reset.

Alert and Action settings are set individually with detector point programming. Individual detector sensitivity threshold settings can have a value of one through nine, and are set by the programmer. A sensitivity threshold setting of zero indicates the detector does not participate in prealarm.

For more detailed information on Pre-alarm, refer to this panel’s programming manual.

2.4.1 How the Control Panel Indicates a Pre-alarm

When a detector activates a Pre-alarm, the control panel does the following if there are no higher priority unacknowledged events:

- Pulses the panel sounder (if the piezo is enabled)
- Flashes the PRE-ALARM LED
- Displays PREALARM in the upper left corner of the LCD, as well as the sensitivity reading, the type code and other information specific to the detector as shown in Figure 2.5.
- Sends a Pre-alarm message to the History buffer, installed printer and annunciators.

When an unacknowledged event with a higher priority exists, the control panel retains indications of the higher priority event (the message, lit LED, audible tone, etc.) while flashing the PRE-ALARM LED and sending a Pre-alarm message to the History buffer, installed printer and annunciators.

The Pre-alarm screen display is the same for both alert and action conditions. Following is a sample screen for a Pre-alarm message.

![Sample Pre-alarm Message](image)

Figure 2.5 Sample Pre-alarm Message

2.4.2 How to Respond to a Pre-Alarm Warning

If the control panel indicates a Pre-alarm, the operator can do the following:

1. Press the ACKNOWLEDGE soft key to acknowledge the Pre-alarm.
2. Press the MORE INFORMATION soft key to display the MORE INFORMATION screen and view additional information on the device and possibly preprogrammed text for recommended...
action. (Refer to Figure 1.7 on page 17 for an example of this screen and an explanation of its fields.)

3. Investigate and correct the condition causing the Pre-alarm.

Note: An Alert Pre-alarm automatically restores to normal when the detector sensitivity drops below the programmed Alert level.

4. Press the SYSTEM RESET soft key if the Pre-alarm message does not clear when the condition causing it is cleared.

A subsequent alarm condition for this detector clears the Action indication from the panel display. The soft key PROGRAM/ALTER STATUS is also displayed on this screen. A password is required to enter these menus, which are described in the IFC-3030 Programming manual.

2.4.3 Interpreting Type ID Codes

The Type ID code that displays in a pre-alarm message is related to the type and function of the detector point that initiates the pre-alarm. For example, a detector with a SMOKE(PHOTO) Type ID code means that the detector is a photoelectric type detector. If the Type ID code is unfamiliar, refer to "Software Type ID Codes" on page 63. This appendix is an alphabetical list of Type ID codes and an explanation of each.
2.5 Security Alarm Event

(Not Suitable for Canadian Applications)

2.5.1 How the Control Panel Indicates a Security Alarm

The system indicates a Security alarm when a monitor module point programmed with a security Type Code activates. The panel will react differently depending on whether or not there are higher priority unacknowledged events.

When no higher priority unacknowledged events exist, the control panel:

- Produces a warbling audible tone (if the piezo is enabled)
- Activates the Security relay (TB1) if it has been selected for security
- Flashes the SECURITY LED (blue)
- Displays a Type Code that indicates the type of security alarm being generated
- Displays SECURITY in the upper left corner of the panel display along with information specific to the device
- Sends a Security message to the History buffer, installed printers and annunciators

When an unacknowledged event with a higher priority exists, the control panel retains the indications of the higher priority event (the message, lit LED, audible tone, etc.) while activating the Security relay if it is selected for security, flashing the SECURITY LED, and sending a Security message to the history buffer, installed printer and annunciators. If there are silenced alarms (the SIGNALS SILENCED LED is lighted), a Security alarm will resound the panel sounder.

A Typical security message that appears on the panel display:

![Sample Security Alarm Message](image)

Figure 2.6 Sample Security Alarm Message

2.5.2 How to Respond to a Security Alarm

A latching Security Type Code latches the control panel in a security alarm. To return the control panel to normal operation, it is necessary to correct what is causing the security condition, as indicated in the numbered steps below, then reset the control panel.

If the control panel indicates a security alarm, take the following action:

1. Press the **ACKNOWLEDGE** soft key to silence the panel sounder and switch the SECURITY LED from flashing to steady—regardless of the number of troubles, alarms, supervisory, and security signals. The control panel sends a Security message to the History buffer and installed printers.

2. Press the **MORE INFORMATION** soft key to display the MORE INFORMATION screen and view additional information on the device and possibly preprogrammed text for recommended
action. (Refer to Figure 1.7 on page 17 for an example of this screen and an explanation of its fields.)

3. Correct the condition that activated the Security point.

4. When the Security condition is corrected, press the **SYSTEM RESET** soft key to return the control panel to normal operation (indicated by the “System Normal” message). The control panel sends a “System Normal” message to the panel display, History buffer, installed printers and annunciators.

The soft key **PROGRAM/ALTER STATUS** is also displayed on this screen. A password is required to enter these menus, which are described in the IFC-3030 Programming manual.

2.5.3 Interpreting Security Type Codes

The Type ID code that displays in a security alarm message is related to the type and function of the point that initiates the security alarm. For example, a monitor module with a TAMPER Type ID code means that the monitor module connects to a tamper switch. If the Type ID code is unfamiliar, refer to "Software Type ID Codes" on page 63. This appendix is an alphabetical list of Type ID codes and an explanation of each.
2.6 Supervisory Signal Event

2.6.1 How the Control Panel Indicates an Active Supervisory

The system indicates a Supervisory alarm when a monitor module point programmed with a supervisory Type Code activates. The panel will react differently depending on whether or not there are higher priority unacknowledged events.

When no higher priority unacknowledged events are exist, the control panel:
- Produces a warbling audible tone (if the piezo is enabled)
- Activates the Supervisory relay (TB2) if it has been selected for supervision
- Flashes the SUPERVISORY LED (yellow)
- Displays a Type Code that indicates the type of supervisory signal being generated
- Displays SUPERVISORY in the upper left corner of the panel display along with information specific to the device
- Sends a Supervisory message to the History buffer, installed printer and annunciators.

When an unacknowledged event with a higher priority exists, the control panel retains the indications of the higher priority event (the message, lit LED, audible tone, etc.) while activating the Supervisory relay if it is selected for supervision, flashing the SUPERVISORY LED, and sending a Supervisory message to the history buffer, installed printer and annunciators. If there are silenced alarms (the SIGNALS SILENCED LED is lighted), a Supervisory alarm will resound the panel sounder.

Following is a typical supervisory message that would appear on a panel display:

![Supervisory Message](image)

Figure 2.7 Sample Supervisory Trouble Message

2.6.2 How to Respond to an Active Supervisory

If the control panel indicates a Supervisory condition, the operator can do the following:

1. Press the ACKNOWLEDGE soft key to acknowledge the Supervisory message.
2. Press the MORE INFORMATION soft key to display the MORE INFORMATION screen and view additional information on the device and possibly preprogrammed text for recommended action. (Refer to Figure 1.7 on page 17 for an example of this screen and an explanation of its fields.)
3. Investigate and correct the condition causing the Supervisory.

Note: A supervisory condition caused by a device with a “tracking” type code automatically clears and restores the panel to normal when the condition causing its activation disappears.
4. Press the \texttt{SYSTEM RESET} soft key to clear any supervisory condition caused by a device with a latching type code: the supervisory will not automatically clear when the condition causing it is cleared. Latching supervisory type codes are \texttt{WATERFLOW S}, \texttt{LATCH SUPERV}, and \texttt{SPRINKLR SYS}.

The panel will send a system normal message to the History buffer, installed printer and annunciators.

\section*{2.6.3 How to Interpret Type Codes}

The Type Code that displays in the Supervisory message indicates the function of the point that initiates the Supervisory. For example, a monitor module with a \texttt{WATERFLOW S} Type Code means that the module monitors the state of a waterflow switch. If the Type ID code is unfamiliar, refer to "Software Type ID Codes" on page 63. This appendix is an alphabetical list of Type ID codes and an explanation of each.
2.7 Disabled Points Event

The control panel indicates disabled points by displaying a screen for each disabled detector, monitor module, control/relay module, and Panel Circuit module. Disabled points do not cause an alarm or any Control-by-event activity. If more than one point is disabled, the control panel automatically displays each point in the sequence in which the point was disabled.

CAUTION: When a zone is disabled, any input and output devices mapped to the zone are disabled if the zone is the point’s primary zone. (The primary zone is the zone in the first position of the zone map.)

When one or more points are disabled, the control panel does the following:

- Holds all disabled output points in the off-state
- Flashes the SYSTEM TROUBLE LED
- Lights the POINT DISABLED LED
- Sends a Disabled Point message to the History buffer, installed printer and annunciators
- Displays a message for each disabled point, with DISABLED in the upper left corner of the LCD as well as other information about the point

![Figure 2.8 Sample Disabled Point Message](image)

Soft Keys

ACKNOWLEDGE: Press to acknowledge the disable message.

MORE INFORMATION: Press to view more information on the disabled point.

PROGRAM/ALTER STATUS: A password is required to enter these menus.
2.8 Active Event

2.8.1 How the Control Panel Indicates an Active Fire Control Point

A point with a Type ID of FIRE CONTROL is used for air handler shutdown, intended to override normal operating automatic functions.

Activation of a FIRE CONTROL point causes the control panel to do the following:

- Initiates the monitor module Control-by-Event
- Sends a message to the panel display, History buffer, installed printer and annunciators
- Does NOT light an indicator at the control panel
- Displays ACTIVE in the upper left corner of the LCD, as well as a FIRE CONTROL Type Code and other information specific to the device

2.8.2 How the Control Panel Indicates an Active Non-fire Point

A point with a Type ID of NON-FIRE is used for energy management or other non-fire situations. NON-FIRE point operation does not affect control panel operation, nor does it display a message at the panel LCD. Activation of a NON-FIRE point activates CBE—but does not cause any indication on the control panel. For example, you can program a NON-FIRE point to turn lights in a zone to a lower setting when activated. In this case, when the point activates the control panel activates the point’s CBE to turn the lights down without any audio or visual indication on the control panel.
2.9 Operation of Special System Timers, Presignal, and PAS

2.9.1 System (Panel) Timers

There are user-programmable time delays for four specific functions: Alarm Verification, AC Fail, Silence Inhibit, and Auto Silence. Refer to this panel’s programming manual for instructions on viewing or modifying these values. (They may be viewed only in programming mode.)

Alarm Verification Timer (*VERIFY TIME*)

A timer that directs the control panel to ignore a fire alarm for a smoke detector, programmed for Alarm Verification, while the Alarm Verification Timer is counting. The timer value can be set from 0-60 seconds, and may not exceed 30 seconds for ULC installations. Table 2.3 contains a summary of how the Alarm Verification Timer works.

<table>
<thead>
<tr>
<th>If this event occurs</th>
<th>The control panel does this</th>
</tr>
</thead>
<tbody>
<tr>
<td>A second fire alarm occurs while the Alarm Verification Timer is counting</td>
<td>Ignores the Alarm Verification Timer</td>
</tr>
<tr>
<td>The Alarm Verification Timer elapses and a fire alarm still exists</td>
<td>Activates the fire alarm</td>
</tr>
<tr>
<td>The Alarm Verification Timer expires and a fire alarm no longer exists</td>
<td>The control panel returns to normal operation and increments the verification counter</td>
</tr>
</tbody>
</table>

Table 2.3 Alarm Verification Timer Operation

AC Fail Delay Timer

This timer delays the time from the start of AC failure to when the trouble is reported. The timer value may be set to 0, or from 6-12 hours. The onboard trouble relay and municipal box output will activate when the countdown is complete. Note that this panel notifies the central station communicator as soon as AC failure occurs, and the central station communicator follows its own programmed schedule for reporting the failure.

Silence Inhibit Timer

This timer disables the SIGNAL SILENCE and RESET key function for the programmed time (MM:SS seconds) when a fire alarm occurs. A Silence Inhibit Timer starts at the first fire alarm. A panel reset is required to re-enable this timer. It can be set with a value from 0 (the timer is disabled) to 5 minutes.

Auto Silence Timer

This timer functions like pressing the SIGNAL SILENCE key. When the Auto Silence Timer reaches its programmed value (0, 10 minutes, 15 or 20 minutes, with the setting = 20 for Canadian installations), the control panel automatically shuts off all active outputs programmed as silenceable. To restart the Auto Silence Timer, press the DRILL key.

2.9.2 Presignal

Presignal is a feature that initially delays activation of outputs with ZF0 in their zone map until the Presignal timer has expired. This feature allows for the initial sounding of outputs only in specific areas, monitored by qualified personnel. To participate in Presignal, inputs and outputs must include Special Zone ZF0 in their zone map. The Presignal timer is programmed to a value from 60 to 180 seconds.
How the Panel Indicates a Presignal Alarm

When an initiating device participating in Presignal goes into alarm, the panel LCD displays a fire alarm message. (Refer to “Fire Alarm Event” on page 23.) If a second alarm occurs while the Presignal timer is counting down, the control panel aborts the Presignal timer countdown and activates all programmed outputs. The fire alarm LED flashes and the panel sounder pulses a steady tone. The control panel latches until the alarm is corrected and the SYSTEM RESET key is pressed to reset the panel.

How to Respond to a Presignal Alarm

Once the Presignal timer has begun counting down, the operator has the duration of the countdown time to respond to the alarm before the control panel automatically activates all outputs with ZF0 in their zone map and CBE linkage to the alarm. The operator can reset the panel if the alarm is determined false, or press DRILL to evacuate the building immediately.

2.9.3 PAS (Positive Alarm Sequence)

PAS (Positive Alarm Sequence), used in conjunction with Presignal, allows a 15-second time period for acknowledging an alarm signal from a fire detection/initiating device. If the alarm is not acknowledged within 15 seconds, all programmed outputs activate. If the alarm is acknowledged within 15 seconds, the control panel will enter Presignal mode as described above. The PAS Inhibit switch can be used to turn off the PAS delay timer when the control panel is unattended.
Section 3 Read Status

This section contains instructions and screen illustrations for Read Status functions and menus using the IFC-3030 display.

Read Status allows viewing of detailed device status information without entering a password or halting full fire protection. Information can be viewed while a fire alarm or trouble condition exists. Read Status screens are refreshed periodically with up-to-date information.

Read Status can be reached from the Main Menu screen, which is accessible from the System Normal screen and from most other screens by pressing the BACK soft key until it displays. (Refer to Figure 1.5 for an illustration of the Main Menu screen.)

Press the READ STATUS soft key on the Main Menu screen to bring up the following screen.

3.1 Point Select Screen

When READ STATUS is pressed at the Main Menu, the following screen appears.

![Figure 3.1 Point Select Screen for Read Status](image)

Soft Keys

POINT SELECT - Pressing this soft key scrolls through the various device types. The types and their address formats are illustrated in Table 3.1.

<table>
<thead>
<tr>
<th>Type</th>
<th>Address Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>LyyDzzz</td>
</tr>
<tr>
<td></td>
<td>L=Loop, yy=Loop number (1-10)</td>
</tr>
<tr>
<td></td>
<td>D=Detector, zzz=Detector address (1-159)</td>
</tr>
<tr>
<td>Module</td>
<td>LyyMzzz</td>
</tr>
<tr>
<td></td>
<td>L=Loop, yy=Loop number (1-10)</td>
</tr>
<tr>
<td></td>
<td>M=Module, zzz=Module address (1-159)</td>
</tr>
<tr>
<td>Panel Circuit</td>
<td>Pyy.z</td>
</tr>
<tr>
<td></td>
<td>P=Panel circuit, yy=Panel Module Number (1-12), z=panel module point (1-8)</td>
</tr>
<tr>
<td>General Zone</td>
<td>Zyy</td>
</tr>
<tr>
<td></td>
<td>Z=Zone, yyyy=Zone number (0-999)</td>
</tr>
<tr>
<td>Logic Zone</td>
<td>ZLyyy</td>
</tr>
<tr>
<td></td>
<td>ZL=Logic Zone, yyyy=Logic Zone number (1-1000)</td>
</tr>
<tr>
<td>Release Zone</td>
<td>Ryy</td>
</tr>
<tr>
<td></td>
<td>R=Releasing Zone, yyyy=Releasing Zone number (00-09)</td>
</tr>
<tr>
<td>Special Function Zone</td>
<td>ZFxx</td>
</tr>
<tr>
<td></td>
<td>ZF=Special Function Zone, x=Special Function Zone number (00, 01, 02, 03, 04, 05, 09)</td>
</tr>
<tr>
<td>Trouble Zone</td>
<td>ZTyyy</td>
</tr>
<tr>
<td></td>
<td>ZT=Trouble Zone, yyyy=Trouble Zone number (1-100)</td>
</tr>
<tr>
<td>Annunciator</td>
<td>AxxPyy</td>
</tr>
<tr>
<td></td>
<td>A=Annunciator, xx=ACS address (1-32), P=Point, yy=Point address (1-96)</td>
</tr>
</tbody>
</table>

Table 3.1 Address Formats

Enter an address to view its attributes (the cursor will be in the underlined section).
3.2 Smoke Detector

When a detector address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display if the detector is a smoke detector.

Figure 3.2 Smoke Detector Screen - Read Status

Display
Lines 1-4 - This could display any current event message, or, as in this example, the System Normal message.

Line 5 - This line contains the screen title and the address of the point being read.

The area between the separator lines, lines 6-14, shows all information concerning the selected point, which is L03D052 in the above example.

Line 6 - Line 6 displays two statistics that display for inputs (detectors and modules) and zones; in the above example they are:

| AUTOMATIC | INACTIVE |

The first field displays the point control. There are three designations that could appear in this field:

- **AUTOMATIC**
 - The point is being controlled automatically by the panel.
- **DISABLED**
 - The point has been disabled by an outside source.
- **TROUBLE**
 - The point is in a trouble state and is no longer functioning automatically.

The second field displays the point status. There are three designations that could appear in this field:

<table>
<thead>
<tr>
<th>Point Status Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INACTIVE</td>
<td>The point is currently reporting no events.</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>The point is currently in an off-normal status.</td>
</tr>
<tr>
<td>PRE-ALARM</td>
<td>The point is currently in a prealarm status.</td>
</tr>
</tbody>
</table>

The device is a detector (an input device) so by referring to the descriptions below, it can be
determined that the point is in a normal state.

Inputs: (detectors, monitor modules, zones)

If the point is not in trouble or disabled, and the point is automatically controlled by the panel, the display will be one of the following:

- AUTOMATIC INACTIVE
- AUTOMATIC ACTIVE
- AUTOMATIC PREALARM

If the point is disabled, the display will be one of the following. The Trouble Status field will appear if the point is in trouble.

- DISABLED INACTIVE <Trouble Status>*
- DISABLED ACTIVE <Trouble Status>*
- DISABLED PREALARM <Trouble Status>*

If the point is in trouble, the display will read:

- TROUBLE INACTIVE <Trouble Status>*
- TROUBLE ACTIVE <Trouble Status>*
- TROUBLE PREALARM <Trouble Status>*

*The field <Trouble Status> will contain one of the device trouble messages listed in Table 2.1.

Line 7 - The custom label for this point.

Line 8 - Continuation of the point’s custom label, first zone, and device type.

Lines 9,10 - a display of all the zones that contain the current point being read. These lines will have values in them only if the device is a detector.

Lines 11 through 14 - These lines display only if the device being read is a smoke or heat detector. Refer to the section More Information on page 17 for an explanation of these fields.

Line 16 - BACK - Press to return to the previous screen.

3.3 Heat Detector

When a detector address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display if the detector is a heat detector.

Figure 3.3 Heat Detector Screen - Read Status

Display

Lines 1 through 10 - Refer to the descriptions in "Smoke Detector" on page 42.

Line 11 - VALUES - This field indicates the percentage of alarm value being read by the detector.

Line 15 - The current time and date are displayed in this line.

Line 16 - Press BACK to return to the previous screen.
3.4 Monitor Module

When a module address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display if the point is a monitor module.

![Figure 3.4 Monitor Module Screen - Read Status](image)

Display

Lines 1 through 10 - Refer to the descriptions in "Smoke Detector" on page 42.

Lines 13 and 14 - When a module is monitoring an AMPS-24 or an ACPS-2406, information will appear in these lines in the following format.

Battery Voltage: 27.9 Volts

Charger Current: 0.0 Amps

Line 15 - The current time and date are displayed in this line.

Line 16 - Press BACK to return to the previous screen.

3.5 Control Module

When a module address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display if the module is a control module.

![Figure 3.5 Control Module Screen - Read Status](image)

Display

Lines 1 through 10 - Refer to the descriptions in "Smoke Detector" on page 42 with the exception of line 6, which is described below.

Battery voltage and **charger current** will appear in lines 13 and 14 if the module is monitoring an AMPS-24 or an ACPS-2406. See text below.
Line 6 - This line displays statistics that display for control module output points; in the above example they are:

<table>
<thead>
<tr>
<th>Point Control Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMATIC</td>
<td>The point is being controlled automatically by the panel.</td>
</tr>
<tr>
<td>MANUAL</td>
<td>The point has been forced into manual control state by an outside source.</td>
</tr>
<tr>
<td>DISABLED</td>
<td>A status change other than a change to MANUAL control has caused the point to go off automatic control.</td>
</tr>
</tbody>
</table>

The second field displays the point status. There are three designations that could appear in this field.

<table>
<thead>
<tr>
<th>Point Status Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>The point is currently not activated.</td>
</tr>
<tr>
<td>ON</td>
<td>The point is currently activated.</td>
</tr>
<tr>
<td>OFF-HOOK</td>
<td>The telephone point is currently off-hook.</td>
</tr>
</tbody>
</table>

The device is a control module (an output device) so by referring to the descriptions below, it can be determined that the point is in a normal state.

Outputs: (Control Modules)

If the point is not in trouble or disabled and the status is Automatic, the display will read:

- AUTOMATIC OFF
- AUTOMATIC ON
- AUTOMATIC OFF-HOOK

If the point has been forced into a manual control state, the display will read as follows. <Trouble Status> will appear when there is a point trouble.

- MANUAL OFF <Trouble Status>*
- MANUAL ON <Trouble Status>*
- MANUAL OFF-HOOK <Trouble Status>*

If the point is disabled, the display will read as follows. <Trouble Status> will appear when there is a point trouble.

- DISABLED OFF <Trouble Status>*
- DISABLED ON <Trouble Status>*
- DISABLED OFF-HOOK <Trouble Status>*

If the point is in trouble, the display will read:

- TROUBLE OFF <Trouble Status>*
- TROUBLE ON <Trouble Status>*
- TROUBLE OFF-HOOK <Trouble Status>*

*The field <Trouble Status> will contain one of the device trouble messages listed in Table 2.1.

Line 11 - blank.

Line 12 - WALK TEST - Displays YES if the device sounds during audible Walk Test.

Line 13 - SILENCABLE - Displays YES if the operator can manually silence an activated output. The output resounds for fire.

Line 14 - SWITCH INHIBIT: YES - Displays YES if the operator can not manually activate an output.

Line 15 - The current time and date are displayed in this line.

Line 16 - Press BACK to return to the previous screen.
3.6 Panel Input

When a Panel Input address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display.

![Figure 3.6 Panel Input Screen - Read Status](image)

Display

Lines 1 through 10 - Refer to the descriptions in "Smoke Detector" on page 42.
Line 15 - Current time and date.

3.7 Panel Output

When a Panel Output address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display.

![Figure 3.7 Panel Output Screen - Read Status](image)

Display

Lines 1 through 10 - Refer to the descriptions in “Smoke Detector” on page 42 with the exception of line 6. Refer to the section Control Module on page 44 for a description of line 6.

WALK TEST - Displays YES if the device sounds during audible Walk Test.

SILENCEABLE - Displays YES if the operator can manually silence an activated output. The output resounds for fire.

SWITCH INHIBIT: NO - Displays NO if the operator can manually activate an output.
3.8 General Zone

When a general zone address is entered into the Point Select Screen and the **ACCEPT** soft key is pressed, the following screen will display

![Figure 3.8 General Zone Screen - Read Status](image)

Display

- Lines 1 through 7 - Refer to the descriptions in "Smoke Detector" on page 42.
- Line 15 - the current time and date

3.9 Logic Zone

When a logic zone address is entered into the Point Select Screen and the **ACCEPT** soft key is pressed, the following screen will display

![Figure 3.9 Logic Zone Screen - Read Status](image)

Display

- Lines 1 through 6 - Refer to the descriptions in "Smoke Detector" on page 42.
- EQUATION: The logic equation for this logic zone is displayed here
- Line 15 - Current time and date.
3.10 Releasing Zone

When a releasing zone address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display.

![Figure 3.10 Releasing Zone Screen - Read Status](image)

Display

Lines 9 through 7 - Refer to the descriptions in "Smoke Detector" on page 42.

Line 9 - DELAY TIME - Gives the delay time setting - a value from 0 to 60 seconds - for this releasing zone.

Line 10 - ABORT SWITCH - Displays the type of abort switch; ULI, IRI, NYC or AHJ.

Line 11 - CROSS ZONE - Displays the cross zone setting; NO, YES, ZONE, or HEAT.

Line 12 - SOAK TIME - Displays the Soak Time setting; 0 to 9999 seconds.

Line 15 - Displays the current time and date.

For further information on Releasing Zones, refer to Appendix B of this manual.

3.11 Special Function Zone

When a special function zone address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display:

![Figure 3.11 Special Function Zone Screen - Read Status](image)
Trouble Zone

Display
Lines 1 through 6 - Refer to the descriptions in "Smoke Detector" on page 42.
Line 7 - The special zone number and function is displayed here.

3.12 Trouble Zone

When a trouble zone address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display.

![Figure 3.12 Trouble Zone Screen - Read Status](image1)

Figure 3.12 Trouble Zone Screen - Read Status

Display
Lines 1 through 6 - Refer to the descriptions in "Smoke Detector" on page 42.
EQUATION: The equation for this trouble zone is displayed here.
Line 15 - Current time and date.

3.13 Annunciator

When an annunciator address is entered into the Point Select Screen and the ACCEPT soft key is pressed, the following screen will display if the point is a monitor module.

![Figure 3.13 Annunciator Screen - Read Status](image2)

Figure 3.13 Annunciator Screen - Read Status
Display
Lines 1-4 - This could display any current event message, or, as in this example, the System Normal message.
Line 5 - Screen title and the address of the point being read.
Line 6 - Displays the annunciator mode.
Line 7 - Displays the state of the active LED.
Line 8 - Displays the state of the trouble LED.
Line 10 - Displays the annunciator source(s).
Section 4 Viewing and Printing History Information

The control panel maintains a history file of alarm, trouble, supervisory, and security events, each with a time/date stamp. An alarm history is maintained in a buffer that can include up to 1000 events. All events, including alarms, are included in a 4000-event buffer. History events may be viewed onscreen, and a printed list may be generated.

To choose a history display screen:
Press the HISTORY SELECT soft key at the Main Menu. A menu screen titled History Select will appear. (Refer to Figure 1.9.)

Press the soft key for the type of event history desired to view all of those types of events that are in the history buffer,

OR

Press the TIME/DATE INTERVAL or POINT RANGE soft key to choose limiting parameters for what will display onscreen.

The following sections illustrate and explain the history displays.

4.1 Events History

Pressing a soft key on the History Select screen will display the history for whatever event type chosen. If the ALL EVENTS soft key is pressed, any events in the history file will display, no matter what the type.

The screen below is an example of what displays when the ALL EVENTS soft key is pressed. The displayed fields are the same for each event type.

![Figure 4.1 Event History Screen](image)

Display
Lines 1-4: Displays any current event message, or, as in this example, the System Normal message

Line 5: Screen title. It will vary depending on the history type chosen for viewing. For example, it will display ALARM HISTORY if the ALARMS ONLY soft key is pressed at the History Select screen.

Line 6: Queue location of event that is described in lines 8-11: In the above example, the detector trouble is the fourth of 17 events in the history file.

Lines 8 through 11 give more information about the event. Refer to “Event Reporting Format” on page 13 for an explanation of these fields.

Soft Keys
NEXT EVENT - Press to view next event (In the above example, event 005 of 017).
PREVIOUS EVENT - Press to view previous event (In the above example, event 003 of 017).
PRINT "xxx" HISTORY - Press to print the history for the event(s) chosen. (In the above example, all 17 events). The report will look like this:

<table>
<thead>
<tr>
<th>EVENT HISTORY</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TROUBLE</td>
<td>08:52:05P SAT AUG 14, 2004</td>
</tr>
<tr>
<td>ACK TROUBLE</td>
<td>08:53:35P SAT AUG 14, 2004</td>
</tr>
<tr>
<td>CLEAR TROUBLE</td>
<td>08:54:05P SAT AUG 14, 2004</td>
</tr>
</tbody>
</table>

4.2 Time and Date Range Selection for All Events
Pressing the Time/Date Interval soft key on the History Select screen displays the Time & Date Range Select screen. This screen allows for selection of a time period that defines the range of events to be viewed and/or printed.

Figure 4.2 Time & Date Range Select Screen

Display
See description in "Events History" on page 51 for lines 1-5.

Soft Keys
START TIME: - Use the keypad to enter a start time for event viewing in the following format:
HH:MM/A/P DDD MM/DD/YY
END TIME: - Use the keypad to enter an end time for event viewing.
EVENT TYPE: - Press this soft key to scroll through the following: ALL EVENTS, ALARMS only, TROUBLES only, SUPERVISORY only, SECURITY only, OTHER only. Stop scrolling at the desired event type.
ACCEPT: - When entries are made, press this soft key to proceed to the All Events in Interval Screen.

All Events in Interval Screen
This screen is the same as the Event History screen, except for its title. Refer to Figure 4.1 on page 51.
4.3 Point Range Select for All Events in Range

Pressing the Point Range soft key on the Local History Select screen displays the Point Range Select screen. This screen allows for selection of a beginning and an end point that defines the range of events to be viewed and/or printed.

Range is selected in the following order:
1. Loop 1 Detectors
2. Loop 2 Detectors, etc...
3. Loop 10 Detectors
4. Loop 1 Modules
5. Loop 2 Modules, etc...

This FACP can have up to 10 loops, which would all follow the above order for range selection.

1. Loop 10 Modules
2. Panel Circuits

The range selected below includes all supervisory event types for every point: the selection begins with the first detector on loop one and ends with the last panel circuit.

![Point Range Select Screen](image)

Figure 4.3 Point Range Select Screen

Display
See description in "Events History" on page 51 for lines 1-5.

Soft Keys

START POINT: - Press this key to scroll through the list of various device types: the format will change for each device. Stop at the desired format/device type, then use the keypad to enter a start point for event viewing.

END POINT: - Press this key to scroll through the list of various device types: the format will change for each device. Stop at the desired format/device type, then use the keypad to enter an end point for event viewing.

EVENT TYPE: - Press this soft key to scroll through the following: ALL EVENTS, ALARMS ONLY, TROUBLES ONLY, SUPERVISORY ONLY, SECURITY ONLY, OTHER ONLY. Stop scrolling at the desired event type.

ACCEPT: - When entries are made, press this soft key to proceed to the All Events in Range Screen.

All Events in Range Screen
This screen is the same as the Event History screen, except for its title. Refer to Figure 4.1 on page 51.
Section 5 Printing Reports

A variety of reports can be generated and printed from the IFC-3030. Reports listing all event, alarm, trouble, supervisory, or security history can be generated from the history screens in Section 4, "Viewing and Printing History Information". The following section describes how to print programming, Walk Test, and active point information.

Note: Report formats are shown below as printed by an 80-column printer. When these reports are printed on a Keltron, which is a 40-column printer, the formats are the same except they are displayed on two lines instead of one.

5.1 Printer Functions Screen

The following screen displays when the Printer Functions soft key is pressed at the Main Menu. This key will appear only if a printer has been selected through programming.

![Figure 5.1 Printer Functions Screen](image)

Soft Keys

PROGRAMMING: Press this soft key to display the Print Programming Menu screen.

ACTIVE POINTS: Press this soft key to display the Active Points Menu screen.

WALK TEST: Press this soft key to print point activations for the last Walk Test performed. The report looks like this:

```
******WALK TEST RESULTS**********************
TEST NO ANSWER  Z003  SMOKE(ION)  02:54:04P WED AUG 11, 2004  L01D073
TEST FIRE ALARM  Z001  HEAT  02:54:31P WED AUG 11, 2004  L01D003
TEST FIRE ALARM  Z001  SECURITY L  02:54:59P WED AUG 11, 2004  L01M004
TEST ACTIVE  Z004  CONTROL  02:55:09P WED AUG 11, 2004  L01M005
```

DETECTOR MAINTENANCE REPORT: Press this soft key to print a list from the printer connected to the control panel that contains the detector maintenance status for each installed addressable
detector. The report looks like this:

```
*****DETECTOR MAINTENANCE****************************************************
NORMAL SMOKE(LASER) Detector L01D001 000330us 000340us Comp:000% Pk: 002%
Alarm: 000% PreAlarm: 000% A6P6 V000
L01D001

NORMAL SMOKE ACCLIM Detector L01D002 000030us 000000us Comp:000% Pk: 000%
Alarm: 000% PreAlarm: 000% A8P8 V000
L01D002
```

Field Identification
Detector Maintenance Report

<table>
<thead>
<tr>
<th>State</th>
<th>Label</th>
<th>Extended Label</th>
<th>Current reading of raw analog value in microseconds</th>
<th>Long term average of raw analog value in microseconds</th>
<th>Compensation percentage</th>
<th>Detector peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL SMOKE(LASER) Detector</td>
<td>L01D001 000330us 000340us</td>
<td>Comp:000% Pk: 002%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Alarm: 000% PreAlarm: 000% A6P6 V000 | L01D001

* Whichever occupancy value is in effect when the report is printed.

INSTALLED POINTS: Press this soft key to display the Installed Points Menu screen.

5.2 Print Programming Menu Screen

This screen displays when the **PROGRAMMING** soft key is pressed on the **PRINTER FUNCTIONS** screen. Refer to Figure 5.1 on page 55).
Soft Keys

NETWORK PARAMETERS: Press to print node number, node label, Channel A and B threshold, network style. The report looks like this:

```
*******************************************************************************
** NETWORK PARAMETERS**
NODE: N124  STYLE 7  NO
NODE LABEL: LAKEVILLE GENERAL HOSPITAL  CH A. THRESHOLD: HIGH
CH B. THRESHOLD: HIGH
*******************************************************************************
```

PANEL SETTINGS: Press to print broadcast time, event ordering, and block acknowledge. The report looks like this:

```
*******************************************************************************
** SETTINGS**
BROADCAST TIME: NO  BLOCK ACKNOWLEDGE: YES
EVENT ORDERING: USA
*******************************************************************************
```

PANEL TIMERS: Press to print timer values for Auto Silence, Silence Inhibit, AC Fail Delay time and whether it has been enabled, Proprietary Reminder, and Remote Reminder timers. The report looks like this:

```
*******************************************************************************
** TIMERS**
AUTO SILENCE: 00:00  SILENCE INHIBIT: NO
AC FAIL DELAY: 06:00  AC FAIL DELAY: ENABLED
PROPRIETARY REMINDER: ENABLED  REMOTE REMINDER: ENABLED
*******************************************************************************
```

LCD DISPLAY: Press to print information about backlight handling during fire alarm and backlight intensity. The report looks like this:

```
*******************************************************************************
** LCD DISPLAY**
LCD INTENSITY: 060  BACKLIGHT: ON
*******************************************************************************
```
5.3 Print Programming Menu Screen (2)

The second PRINT PROGRAMMING MENU screen displays when MORE is pressed at the first PRINT PROGRAMMING MENU screen:

Printing Reports

58

Figure 5.3 Print Programming Screen

Soft Keys

SUPERVISION: Press to print information on power supply and printer monitoring. The report looks like this:

```
******SUPERVISION***************************************************************
MAIN POWER SUPPLY ADDRESS: L01M006
PRINTER: 80-column
TAMPER INPUT: NO
 AUXILIARY TROUBLE: NO
********************************************************************************
******EQUATIONS************************************************************************
ZL001
 AND(Z02,Z05,L2D121)
ZL002
 DEL(10:30:00,11:30:00,L1M140)
********************************************************************************
******CUSTOM ACTION MESSAGE****************************************************
CAM 1
GO TO ALARM SITE AND INVESTIGATE
APPROACH THE ALARM LOCATION WITH CAUTION
BRING CELL PHONE AND REPORT WHEN ON SITE
CAM 2
CALL MANAGER WITH REPORT
********************************************************************************
******EVENT LOGGING************************************************************
NON-FIRE ACTIVATIONS: NO OUTPUT ACTIVATIONS: NO
```

LOGIC EQUATIONS: Press to print all logic equations (1-1000). The report looks like this:

CUSTOM ACTION MESSAGES: Press to print all custom action messages (1-100). The report looks like this:

EVENT LOGGING: Press to print non-fire and output activations if these events have been chosen for logging during panel programming. The report looks like this:
5.4 Active Points Report Screen

This screen displays when the **ACTIVE POINTS** soft key is pressed on the **PRINTER FUNCTIONS** screen (refer to Figure 5.1 on page 55).

![Figure 5.4 Print Active Points Screen]

Soft Keys

This screen provides a menu for printing a list of *active* points for whatever type of list is chosen. The soft key will display on the screen only if there is at least one event in the queue.

Note: For a printed list of *history* information, refer to the history screens in Section 4, "Viewing and Printing History Information".

5.5 Installed Points Report Screen

This screen displays when the **INSTALLED POINTS** soft key is pressed on the **PRINTER FUNCTIONS** screen (refer to Figure 5.1 on page 55)

![Figure 5.5 Print Programming Screen]

Soft Keys

SLC POINTS: Press to print information on installed SLC points. When the soft key is pressed, a field appears to allow choice of a single SLC or ALL. Toggle until the desired choice appears in...
the field, then press ACCEPT. The report looks like this.

INSTALLED POINTS

<table>
<thead>
<tr>
<th>Status</th>
<th>Software</th>
<th>Type ID</th>
<th>Detector or Module</th>
<th>Silencer (S or * - Sounder/Relay Base Only)</th>
<th>Alarm Verification Testing (V or *)</th>
<th>Pre-alarm Alert (T) or Action (L)</th>
<th>Alarm Tracking (T) or Latching (L)</th>
<th>Local Mode Participation (Y or N)</th>
<th>Multi-Detector Co-op Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>RELAY</td>
<td>L02M005</td>
<td>NL * *** **</td>
<td>6666</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel Circuits: Press to print a report of installed panel circuit points. The report resembles the installed SLC points with exceptions relative to panel circuits. Refer to the field identification below.

INSTALLED POINTS

<table>
<thead>
<tr>
<th>Status</th>
<th>Software</th>
<th>Type ID</th>
<th>Detector or Module</th>
<th>Silencer (S or *)</th>
<th>Walk Test Participation (W or *)</th>
<th>Audible Walk Test (A or *)</th>
<th>Alarm Verification Testing (V or *)</th>
<th>Alarm Tracking (T) or Latching (L)</th>
<th>Local Mode Participation (Y or N)</th>
<th>Weekly Occupancy Schedule No.</th>
<th>Custom Action Message No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>RELAY</td>
<td>L02M005</td>
<td>NL * *** **</td>
<td>6666</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL ZONES: Press to print a report of installed general zones.

INSTALLED POINTS

<table>
<thead>
<tr>
<th>Status</th>
<th>Software</th>
<th>Type ID</th>
<th>Detector or Module</th>
<th>Silencer (S or *)</th>
<th>Walk Test Participation (W or *)</th>
<th>Audible Walk Test (A or *)</th>
<th>Alarm Verification Testing (V or *)</th>
<th>Alarm Tracking (T) or Latching (L)</th>
<th>Local Mode Participation (Y or N)</th>
<th>Weekly Occupancy Schedule No.</th>
<th>Custom Action Message No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>GENERAL ZONE General Alarm</td>
<td>Z000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>GENERAL ZONE Zone 001</td>
<td>Z001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>GENERAL ZONE Zone 002</td>
<td>Z002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LOGIC ZONES: Press to print a report of installed logic zones.

```
| ON LOGIC ZONE AND(Z1, NOT(L2M6)) | ZL0001 |
| OFF LOGIC ZONE AND(ZL10, NOT(Z75)) | ZL0011 |
```

ACS: Press to print information on the device types for addresses 1-32. The report looks like this:

<table>
<thead>
<tr>
<th>BOARD</th>
<th>01: 64PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POI NT 01:</td>
<td>ACKNOWLEDGE</td>
</tr>
<tr>
<td>POI NT 02:</td>
<td>SILENCE</td>
</tr>
<tr>
<td>POI NT 03:</td>
<td>RESET</td>
</tr>
<tr>
<td>POI NT 04:</td>
<td>CONTROL</td>
</tr>
<tr>
<td>POI NT 05:</td>
<td>CONTROL</td>
</tr>
<tr>
<td>POI NT 06:</td>
<td>CONTROL</td>
</tr>
<tr>
<td>POI NT 07:</td>
<td>CONTROL</td>
</tr>
<tr>
<td>POI NT 08:</td>
<td>CONTROL</td>
</tr>
<tr>
<td>POI NT 09:</td>
<td>MONITOR</td>
</tr>
</tbody>
</table>

RELEASING ZONES: Press to print a report of installed releasing zones.

```
| OFF RELEASE ZONE | ZR0 |
| OFF RELEASE ZONE | ZR1 |
```

SPECIAL ZONES: Press to print a report of installed releasing zones.

```
| OFF SPECIAL ZONE | ZF0 |
```

TROUBLE ZONES: Press to print a report of installed trouble zones.

```
| OFF TROUBLE ZONE OR(ZT049, ZT050) |
```
RANGE: Press to bring up the following screen, which allows the programmer to choose a range of installed points to print.

![Installed Points Menu - Range](Image)

Figure 5.6 Installed Points Menu - Range

Soft Keys

START POINT: Press to place the cursor in this field, and to toggle between the choices, which appear in print order: DETECTOR (loop1, detector 1 through loop 10, detector 159), MODULE (loop 1, module 1 through loop 10, module 159), PANEL CIRCUIT (Panel Circuit 1, module 1 through Panel Circuit 3, module 12), GENERAL ZONE, LOGIC ZONE, RELEASE ZONE, ACS PTS, SPECIAL ZONE, TROUBLE ZONE. Using the keypad, type in the start point address.

END POINT: Press to place cursor in this field, and to toggle between the choices as described above. Using the keypad, type in the end point address.
Appendix A Software Type ID Codes

Alphabetical List

The following chart lists IFC-3030 Type ID codes in alphabetical order. These codes are assigned during programming based on the types and functions of the devices they are assigned. The codes appear in point message formats.

<table>
<thead>
<tr>
<th>Software Type ID Code</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT SWITCH</td>
<td>Monitor that provides an abort function for a releasing zone through connection to a UL-listed abort station)</td>
</tr>
<tr>
<td>ACCESS MONTR</td>
<td>Monitor for building access</td>
</tr>
<tr>
<td>ACK SWITCH</td>
<td>Monitor used to silence panel sounder, and to give an acknowledge message on the panel display</td>
</tr>
<tr>
<td>AIR REF</td>
<td>7351J detector used to monitor air quality entering a protected area</td>
</tr>
<tr>
<td>ALARMS PEND</td>
<td>Control module/panel circuit or NAC for output that will activate upon receipt of an alarm condition, and remain in the alarm state until all alarms have been acknowledged. Programmed for switch inhibit</td>
</tr>
<tr>
<td>ALLCALL PAGE</td>
<td>Monitor used for emulation of AMG-1 All-call switch, activating all speaker circuits</td>
</tr>
<tr>
<td>AREA MONITOR</td>
<td>Monitor for building access</td>
</tr>
<tr>
<td>AUDIBLE CKT</td>
<td>Control module/panel circuit relay used on audible circuit NAC</td>
</tr>
<tr>
<td>AUDIO SYSTEM</td>
<td>Monitor for audio equipment</td>
</tr>
<tr>
<td>BELL CIRCUIT</td>
<td>Control module used with NAC with bells</td>
</tr>
<tr>
<td>blank</td>
<td>Operates as CONTROL with no Type ID label</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Control module used with NAC</td>
</tr>
<tr>
<td>CONTROL NAC</td>
<td>Control module/panel circuit relay or NAC</td>
</tr>
<tr>
<td>DRILL SWITCH</td>
<td>Monitor used for activation that emulates panel Drill switch, activating silenceable fire outputs</td>
</tr>
<tr>
<td>EQUIP MONITR</td>
<td>Monitor used for recording access to equipment</td>
</tr>
<tr>
<td>EVACUATE SWITCH</td>
<td>Monitor used for activation that emulates panel Drill switch, activating silenceable fire outputs</td>
</tr>
<tr>
<td>FIRE CONTROL</td>
<td>Monitors non-fire activations</td>
</tr>
<tr>
<td>FORM C RESET</td>
<td>Control module used to interrupt 24V power to four-wire conventional detectors for 30 seconds upon reset. Used in conjunction with a monitor module with a conventional detector Type ID</td>
</tr>
<tr>
<td>GEN ALARM</td>
<td>Control module, XPC-8 circuit, or XP5-C (NAC mode) configured as a Municipal Box Transmitter for NFPA 72 Auxiliary Fire Alarm Systems applications (MBT-1 required). This Type ID can also be used for general alarm activation. It is programmed as “switch inhibit”.</td>
</tr>
<tr>
<td>GEN PEND</td>
<td>Control module, XPC-8 circuit, or XP5-C (NAC mode) that will activate upon receipt of an alarm and/or trouble condition, and remain in the ON state until all events have been acknowledged</td>
</tr>
<tr>
<td>GEN SUPERVIS</td>
<td>Control module, XPC-8, or XP5-C (NAC mode) activated under any supervisory condition (includes sprinkler type). It is programmed as “switch inhibit”</td>
</tr>
<tr>
<td>GEN TROUBLE</td>
<td>Control module, XPC-8, or XP5-C (NAC mode) activated under any System Trouble condition. It is programmed as “switch inhibit”</td>
</tr>
<tr>
<td>HEAT</td>
<td>Adjustable threshold heat detector</td>
</tr>
<tr>
<td>HEAT+</td>
<td>Adjustable threshold heat detector with a low temperature warning.</td>
</tr>
<tr>
<td>HEAT(FIXED)</td>
<td>Intelligent 135°F thermal sensor detector</td>
</tr>
<tr>
<td>HEAT(ROR)</td>
<td>15°F per minute rate-of-rise detector</td>
</tr>
<tr>
<td>HEAT DETECT</td>
<td>Monitor for conventional heat detector</td>
</tr>
<tr>
<td>HORN CIRCUIT</td>
<td>Control module/panel circuit relay module used with NAC with horns</td>
</tr>
<tr>
<td>INST RELEASE</td>
<td>Control module used with NAC. Always non-silenceable and switch-inhibited</td>
</tr>
<tr>
<td>ISOLATED NAC</td>
<td>Supervised NAC for notification appliance, used with audio isolators. Activates even if there is a short on its NAC circuit. Canada installations only.</td>
</tr>
<tr>
<td>ISOLATED SPK</td>
<td>Supervised NAC for speaker circuit, used with audio isolators. Activates even if there is a short on its audio circuit. Canada installations only.</td>
</tr>
<tr>
<td>LATCH SUPERV</td>
<td>Indicates latching supervisory condition</td>
</tr>
<tr>
<td>MAN RELEASE</td>
<td>Monitor module that provides manual release for a releasing zone through connection to a UL-listed pull station</td>
</tr>
<tr>
<td>MAN REL DELAY</td>
<td>Monitor module that provides manual release with a 10 second delay for a releasing zone through connection to a UL-listed pull station</td>
</tr>
<tr>
<td>MONITOR</td>
<td>Alarm-monitoring device</td>
</tr>
<tr>
<td>NC MONITOR</td>
<td>Alarm monitoring device, where an open circuit=active. SLC only</td>
</tr>
<tr>
<td>NC NON FIRE</td>
<td>Monitors non-fire activations, where an open circuit=active. SLC only.</td>
</tr>
<tr>
<td>Software Type ID Code</td>
<td>Device</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>NC SUP L</td>
<td>Indicates latching supervisory condition, where an open circuit=active. SLC only.</td>
</tr>
<tr>
<td>NC SUP T</td>
<td>Indicates tracking supervisory condition, where an open circuit=active. SLC only</td>
</tr>
<tr>
<td>NON FIRE</td>
<td>Monitors non fire activations</td>
</tr>
<tr>
<td>NONRESET CTL</td>
<td>Output unaffected by "System Reset" command</td>
</tr>
<tr>
<td>PAS INHIBIT</td>
<td>Monitor used to inhibit Positive Alarm Sequence (PAS)</td>
</tr>
<tr>
<td>POWER MONTR</td>
<td>Monitor for main and auxiliary power supplies</td>
</tr>
<tr>
<td>PULL STATION</td>
<td>Manual fire-alarm activating device</td>
</tr>
<tr>
<td>REL AUDIBLE</td>
<td>Activates audio or visual devices steady when releasing starts</td>
</tr>
<tr>
<td>REL END BELL</td>
<td>Control module used to activate NAC audio or visual device when releasing circuits shut off</td>
</tr>
<tr>
<td>REL CKT ULC</td>
<td>Control module used to direct outputs to perform a release function as required by ULC</td>
</tr>
<tr>
<td>RELAY</td>
<td>Form-C relay control module</td>
</tr>
<tr>
<td>REL. FORM C</td>
<td>Form-C relay that directs outputs to perform a releasing function</td>
</tr>
<tr>
<td>RELEASE CKT</td>
<td>Directs outputs to perform a releasing function</td>
</tr>
<tr>
<td>RESET SWITCH</td>
<td>Monitor used to reset the control panel</td>
</tr>
<tr>
<td>RF MON MODUL</td>
<td>Wireless alarm-monitoring device</td>
</tr>
<tr>
<td>RF PULL STA</td>
<td>Wireless manual fire alarm-activating device</td>
</tr>
<tr>
<td>RFSMOKE(PHOTO)</td>
<td>Wireless smoke detector</td>
</tr>
<tr>
<td>RF SUPERSV/RYS</td>
<td>Wireless supervisory-monitoring device</td>
</tr>
<tr>
<td>SECOND SHOT</td>
<td>Monitor module that provides a second manual release for a releasing zone through connection to a UL-listed pull station</td>
</tr>
<tr>
<td>SECURITY L</td>
<td>Monitor for activation of latching security alarm</td>
</tr>
<tr>
<td>SIL SWITCH</td>
<td>Monitor used as Signal Silence switch, turning off all activated silenceable outputs</td>
</tr>
<tr>
<td>SMOKE ACCLIM</td>
<td>Combination photoelectric/heat detector</td>
</tr>
<tr>
<td>SMOKE(ACCLIM+)</td>
<td>Combination photoelectric/heat detector with low temperature warning</td>
</tr>
<tr>
<td>SMOKE CONVEN</td>
<td>Conventional smoke detector attached to an M302MJ</td>
</tr>
<tr>
<td>SMOKE DETECT</td>
<td>Conventional smoke detector attached to an M302MJ</td>
</tr>
<tr>
<td>SMOKE(DUCTI)</td>
<td>Duct ionization smoke detector</td>
</tr>
<tr>
<td>SMOKE(DUCTP)</td>
<td>Duct photoelectric smoke detector</td>
</tr>
<tr>
<td>SMOKE(HARSH)</td>
<td>HARSH smoke detector</td>
</tr>
<tr>
<td>SMOKE(ION)</td>
<td>Ionization smoke detector</td>
</tr>
<tr>
<td>SMOKE(LASER)</td>
<td>Laser smoke detector</td>
</tr>
<tr>
<td>SMOKE(MULTI)</td>
<td>Multisensor smoke detector</td>
</tr>
<tr>
<td>SMOKE(PHOTO)</td>
<td>Photoelectric smoke detector</td>
</tr>
<tr>
<td>SPEAKER</td>
<td>Control module for speaker</td>
</tr>
<tr>
<td>SPRINKLR SYS</td>
<td>Monitor for a waterflow device</td>
</tr>
<tr>
<td>STROBE</td>
<td>Control module used with NAC with strobes</td>
</tr>
<tr>
<td>SUP L(DUCTI)</td>
<td>Duct ionization smoke detector, latching</td>
</tr>
<tr>
<td>SUP L(DUCTP)</td>
<td>Photoelectric smoke detector used as a duct detector to report supervisory condition rather than alarm, latching</td>
</tr>
<tr>
<td>SUP L(ION)**</td>
<td>Ionization smoke detector, latching</td>
</tr>
<tr>
<td>SUP L(LASER)**</td>
<td>Laser smoke detector, latching</td>
</tr>
<tr>
<td>SUP L(PHOTO)**</td>
<td>Photoelectric smoke detector, latching</td>
</tr>
<tr>
<td>SUP T(DUCTI)**</td>
<td>Duct ionization smoke detector, tracking</td>
</tr>
<tr>
<td>SUP T(DUCTP)**</td>
<td>Photoelectric smoke detector used as a duct detector to report supervisory condition rather than alarm, tracking</td>
</tr>
<tr>
<td>SUP T(ION)**</td>
<td>Ionization smoke detector, tracking</td>
</tr>
<tr>
<td>SUP T(LASER)**</td>
<td>Laser smoke detector, tracking</td>
</tr>
<tr>
<td>SUP T(PHOTO)**</td>
<td>Photoelectric smoke detector, tracking</td>
</tr>
<tr>
<td>SYS MONITOR</td>
<td>Monitor for equipment security</td>
</tr>
<tr>
<td>TAMPER</td>
<td>Monitor for activation of tamper switch</td>
</tr>
<tr>
<td>TELE PAGE</td>
<td>Monitor used to emulate the page button on an FFT-7, allowing remote paging to a fire area</td>
</tr>
<tr>
<td>TELEPHONE</td>
<td>Control module for standard telephone circuit</td>
</tr>
<tr>
<td>TRACKING SUPERV</td>
<td>Monitor for waterflow tamper switches for alarm points</td>
</tr>
<tr>
<td>TROUBLE MON</td>
<td>Monitor for trouble inputs</td>
</tr>
<tr>
<td>WATERFLOW</td>
<td>Monitor for waterflow alarm switch</td>
</tr>
</tbody>
</table>

Appendix Table A-1 Software Type ID Codes, Alphabetical List (2 of 3)
<table>
<thead>
<tr>
<th>Software Type ID Code</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATERFLOW S</td>
<td>Monitor for supervisory condition for activated waterfall switch</td>
</tr>
</tbody>
</table>

*Not suitable for Canadian applications.
**Subject to AHJ approval.

Appendix Table A-1 Software Type ID Codes, Alphabetical List (3 of 3)
Appendix B Releasing Zones

Introduction

The control panel provides ten Releasing Zones (ZR00-ZR09). These are special zones that can be used for up to ten independent releasing operations. This section contains descriptions of each releasing function option and an example of how Releasing Zone options work.

For instructions on programming Releasing Functions, refer to this panel’s programming manual.

Each Releasing Zone includes the following releasing options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Zone</td>
<td>Cross Zones let you program the control panel to activate a Releasing Zone when two or more detectors are alarmed. Cross Zone selections are:</td>
</tr>
<tr>
<td>Yes</td>
<td>Two or more detectors are alarmed that are mapped to one of the ten Releasing Zones (ZR00-ZR09).</td>
</tr>
<tr>
<td>Zone</td>
<td>Two or more detectors are alarmed that are mapped to two different Software Zones and mapped to one of the ten Releasing Zones (R0-R9).</td>
</tr>
<tr>
<td>Heat</td>
<td>At least one smoke detector mapped to one of the ten Releasing Zones (ZR00-ZR09) is alarmed and at least one heat detector mapped to the same Releasing Zone as the smoke detector is alarmed.</td>
</tr>
<tr>
<td>None</td>
<td>Cross Zones are not used.</td>
</tr>
<tr>
<td>Delay Timer</td>
<td>A 0–60 second programmable delay before activating a zone.</td>
</tr>
<tr>
<td>Abort Switch</td>
<td>An Abort Switch Type Code used to abort activation of a zone.</td>
</tr>
<tr>
<td>Manual Release</td>
<td>Allows immediate zone activation by overriding the abort function, cross-zone function, and delay timer.</td>
</tr>
<tr>
<td>Soak Timer</td>
<td>Automatically shuts off the releasing device after a preprogrammed period of time. Select 0001-9999 seconds for Soak Time or 0000 seconds for no Soak Time.</td>
</tr>
</tbody>
</table>

Appendix Table B-1 Releasing Options

The Read Status function allows the operator to view the current selections for a Releasing Zone. Refer to “Releasing Zone” on page 48 for more information.

How Releasing Zones Operate

The figure below contains an illustrated example of how Releasing Zones work, using cross zone selections with four detectors and an NAC mapped to Releasing Zone 1 (listed as ZR01 in the zone map). Appendix Table B-2 lists the cross zone selections and the conditions that activate the Releasing Zone:
Appendix Figure B-1 Illustrated Example of Cross Zone Programming

Listing of each Cross Zone option and the conditions required to activate the Releasing Zone, according to the example shown in Appendix Figure B-1.
Cross Zone Selection (Cross=)

<table>
<thead>
<tr>
<th>Cross=</th>
<th>Condition(s) Required to Activate the Releasing Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>An alarm from any detector activates the releasing circuit.</td>
</tr>
<tr>
<td>YES</td>
<td>An alarm from any two detectors activates the releasing circuit.</td>
</tr>
</tbody>
</table>
| **ZONE** | An alarm from two detectors mapped to different Software Zones, but mapped to the same Releasing Zone.
 - An alarm from L02D101 and L02D103 – detectors mapped to different zones, but both list ZR01 in their zone map.
 - An alarm from L02D102 and L02D104 – detectors mapped to different zones, but both list ZR01 in their zone map.
 - An alarm from L02D101 and L02D104 – detectors mapped to different zones, but both list ZR01 in their zone map.
 - An alarm from L02D102 and L02D103 – detectors mapped to different zones, but both list ZR01 in their zone map. |
| **HEAT** | Activation of heat detector L02D104 and one smoke detector (L02D101, L02D102, or L02D103). |

Appendix Table B-2 Example of Cross Zone Selections
Releasing Zones
Index

A
- Abort 67
- AC Fail Delay timer
 - Setting report 57
- AC Fail delay timer 38
- ACCEPT soft key 15
- Acknowledge
 - An Event 21
 - Block and point 22
- Acknowledge soft keys
 - disabled local control 11
- ACS Points Report 61
- Active Fire Control Point
 - Panel indication 37
- Active Non-fire Point
 - Panel indication 37
- Active Points Report 59
- Address formats 41
- Alarm Verification timer 38
- Alphanumeric keyboard, function of 11
- Annunciator
 - Address format 41
 - Read Status 49
- Arrow Keys, about 11
- Arrow keys, use of 15
- Auto Silence timer 38
 - Setting report 57

B
- BACK soft key 15
- Block Acknowledge 22
- Block acknowledge setting report 57
- Broadcast time setting report 57

C
- Canada Event Order 18
- Canadian Applications 32
- CAUTION
 - Information about the Caution notation 7
 - When a zone is disabled, any input or output devices mapped... 36
- Control Module
 - Read Status 44–45
- Co-operative Multi-Alarm Sensing display 18
- Cross Zone 67
- Cross Zone Programming illustration 68
- Custom Action Message 17
- Custom Action Messages report 58

D
- DCC, see Display and Control Center
- Delay Timer 67
- Detector
 - Action/Status display 18
 - Address format 41
 - Co-operative Multi-alarm Sensing 18
 - Heat Detector Read Status 43
 - Peaks display 18
 - Read Status 42–43
 - values display 17
- Detectors
 - Verify Count display 18
- Device Troubles 26
- DISABLE/ENABLE key, about 11
- Disabled Points
 - Panel indication 36
- Disabled points
 - primary zone 36
- Display and Control Center 10
- Display and Control Center (DCC) 22
- Displayless Mode 8
 - service-level switches, ACK, SIGSIL, SYSRST, LAMP 8
- Drill
 - disabled local control 11
- DRILL HOLD 2 SEC. fixed function key 11

E
- Enter key, about 11
- Esc key, about 11
- Event
 - Acknowledging 21
 - Definition of 21
 - Fire Alarm 23
 - History report 52
 - History screen 51
 - Off-normal 21
- Event Logging
 - Report listing 58
- Event Ordering 18
- Event ordering setting report 57
- Event reporting format 13
 - point events 13
 - system events 14

F
- F1 key, about 11
- Fields, adding/modifying 15
- Fire Alarm
 - How to respond 23
 - Panel indications 23
- FIRE ALARM SCROLL/DISPLAY fixed function key 11
Firmware version numbers, to view 11
Fixed Function Keys, functions of 11

G
General Zone
 Address format 41
 Read Status 47
General Zones Installed Points Report 60

H
History Information, viewing & printing 51–53
 All events 51
 Event History report 52
 Event History screen 51
 Point Range 53
 Range 53
 Time & Date Range 52

I
INCREMENT NUMBER key, about 12
 Installed Points Report 59
 Interval selection, all events 52

L
label 14
LAMP TEST key, about 11
 LCD Display report 57
 LED Indicators 12
 Local Control option 10
 Logic Equations report 58
 Logic Zone
 Address format 41
 Read Status 47
 Report listing 58
 Logic Zones Installed Points Report 61

M
M500XJ module 29
Main Menu 15
 Event Counts display 16
 History Select 19
 More Information 17
 Multiple Event List 18
 Printer Functions 20
 Program/Alter Status 20
 Read Status 20
 Manual Release 67
 Message Formats
 Point Events 13
 System Events 14
 System Normal 12
 Message Formats, about 12–15
 Module
 Address format 41
See also Control Module 44
See also Monitor Module 44
Monitor Module
 Read Status 44
 Multiple Event List 18

N
Navigating menu and programming screens 15
 Network parameters report 57
 NEXT SELECTION/PREVIOUS SELECTION key, about 11
 NOTE
 If a monitor module programmed with a Waterflow type code... 23
 Note
 For a printed list of history information, refer to... 59
 If an unacknowledged event occurs while the Multiple Event list displays... 19
 If Local Control is disabled... 22
 If the panel is programmed for Receive Mode... 22
 Information about Notes 7
 Key functions are as described below unless... 10
 Report formats are shown below as printed by an 80-column printer... 55
 The first four lines of the display may indicate an alarm for a point unrelat-... 42

O
Off-normal events 21
OTHER EVENT SCROLL/DISPLAY fixed function key 11

P
panel
 when it can not read a specified point 15
Panel Circuit
 Address format 41
Panel Circuits Installed Points Report 60
Panel Input Read Status 46
Panel Output
 Read Status 46
Panel resound
 if security alarm and Signals Silenced 32
 if supervisory alarm and Signals Silenced 34
Panel Timers, See System Timers 38
PAS (Positive Alarm Sequence) 39
Point (Device) Troubles table 27
Point Acknowledge 22
Point events format 13
Point Range select, all events 53
Point Trouble
 How to respond 26
 Panel indication 25
Power supply
 supervision setting report 58
Pre-alarm
 Action 30
 Alert 30
 How to respond 30
 latching 30
 non-latching 30
 Panel indications 30
Presignal 38
 How to respond 39
 Panel Indication 39
Primary Zone
 Disabling 36
Print
 Programming Menu 56
 Programming Menu 2 58
PRINT SCREEN key, about 11
Printer
 supervision setting report 58
Printer Functions screen 55
Program/Alter Status 20
Proprietary Reminder timer
 Setting report 57

R
Read Status 41–50
 Annunciator 49
 Detector 42
 General Zone 47
 Heat Detector 43
 Logic Zone 47
 Monitor Module 44
 Panel Input 46
 Panel Output 46
 Releasing Zone 48
 Special Function Zone 48
 Trouble Zone 49
RECALL LAST ENTRY key, about 12
Receive Mode 11, 22
Releasing Zone
 Abort Switch 67
 Address Format 41
 Cross Zone 67
 Delay Timer 67
 Manual Release 67
 Read Status 48
 Soak Timer 67
 Releasing Zones (R0-R9) 67–69
 Releasing Zones Installed Points Report 61
Remote Reminder timer
 Setting report 57
Report
 ACS Points 61
 Custom Action Messages 58
 Event Logging 58
 Installed Points 59
 LCD display settings 57
 Logic Equations 58
 Network parameters 57
 Settings 57
 Supervision 58
 Timers 57

S
Security Alarm
 How to respond 32
 Panel indications 32
SECURITY SCROLL/DISPLAY fixed function key 11
 SIGNAL SILENCE fixed function key 11
 Silence Inhibit timer 11, 38
 Setting report 57
SLC Installed Points Report 59
Smoke Detector, See Detector 42
Soak Timer 67
Soft Keys, functions of 11
Software Type ID Codes 63, 67
Special Function Keys 11
Special Function Zone
 Address format 41
 Read Status 48
 ZF0 and Presignal 38
Special Function Zones
 Installed Points Report 61
 Supervision report 58
SUPERVISORY SCROLL/DISPLAY fixed function key 11
Supervisory Signal (Active Supervisory)
 How to respond 34
 Panel indication 34
Supplemental Information 7
System (Panel) Timers
 AC Fail 38
 AC Fail Delay 57
 Alarm Verification 38
 Auto Silence 38, 57
 Silence Inhibit 38, 57
System event format 14
System Normal
 Internal panel activity 21
System Normal screen 12, 21
 custom graphic 13
System Reset
 disabled local control 11
 if Silence Inhibit Timer is running 11
silencing active outputs 11
SYSTEM RESET fixed function key, about 11
System Trouble
How to respond 26
Panel indication 25
System Troubles 28

T
Time & Date Range selection, all events 52
Timers - See System (Panel) Timers 57
Trouble - See System or Point trouble 26
TROUBLE SCROLL/DISPLAY fixed function key 11
Trouble Zone
Address format 41
Read Status 49
Trouble Zones Installed Points Report 61
Type ID codes, see Software Type ID codes 63

U
USA Event Order 18

V
VeriFire
entering custom graphic 13
VeriFire™
Use with displayless mode 8

W
WARNING
Information about the Warning notation 7

Z
ZFO, See Special Zone ZF0 38
Zones
Address Formats 41
Primary, disabling 36
See also General Zone, Logic Zone, Trouble Zone, Releasing Zone, Special Function Zone