Portable BACnet®/IP to MS/TP Router
Installation Instructions
TL-BRTRP-0

Part No. 24-10414-2, Rev. F
Issued April 2016

Refer to the QuickLIT website for the most up-to-date version of this document.

Applications
The Portable BACnet®/Internet Protocol to Master Slave/Token-Passing (MS/TP) Router (TL-BRTRP-0) routes information between BACnet/IP and MS/TP networks. It is intended to be used as an interface between the following applications:

• FX CommPro BACnet software (running on your computer) and FX Field Controllers fitted with BACnet MS/TP communication cards
• FX-PCT software (running on your computer) and FX-PC Programmable BACnet Controllers
• Controller Configuration Tool (CCT) software (running on your computer) and BACnet Field Equipment Controllers (FECs)

Note: CCT must be at Release 5.3 or later to support the BACnet routing connection.

To configure the BACnet/IP to MS/TP router, use the router webpage.

The router electronics exist in a small portable case and are powered from the computer USB port; however, no USB drivers are needed. The router contains a 10/100 Mbps Ethernet Auto-Medium Dependent Interface Crossover (MDIX) port and an MS/TP compatible port.

The MS/TP port offers a choice of EIA-485 connectors (an RJ-11 connector or a 3-pin terminal block with removable plug) and is optically isolated from USB power. The MS/TP port can address 127 devices. The MS/TP port also supports up to 32 devices on a single segment, and you can use repeaters to add additional devices or to extend bus length. All MS/TP baud rates are supported.

Installation

Parts Included
Included in this package are the following items:

• BACnet/IP to MS/TP Router
• BACnet/IP to MS/TP Router Installation Instructions (Part No. 24-10414-2)
• USB cable

Connectors
The BACnet/IP to MS/TP Router contains the following:

• 3-pin (MS/TP) Pin Assignments (also explained on the product label) - See Figure 1.

Figure 1: 3-Pin Connector

• RJ-11 (MS/TP) Pin Assignments
 • 2 RT-
 • 4 COM
 • 5 RT+
 • All other pins are unused. See Figure 2.

Figure 2: RJ-11 Connector

• RJ-45 (Medium Dependent Interface [MDI] Ethernet) Pin Assignments
 • 1 TD+
 • 2 TD-
 • 3 RD+
 • 6 RD-
 • All other pins are unused. See Figure 3.
USB Port
The BACnet router has a USB 2.0, Type B receptacle which is only used to obtain power from a computer. No communications are supported via the USB port. Since no USB driver is required, disregard the unknown hardware window that appears when you connect the BACnet router to a computer's USB port.

MS/TP Port
The MS/TP port uses an EIA-485 transceiver connected to both a 3-pin removable connector and an RJ-11 connector. The + and - lines of the EIA-485 transceiver tie to RT+ and RT- pins of both connectors. The COM pins of both connectors tie to the circuit ground of the EIA-485 transceiver. The port is electrically isolated from the USB power.

The router can support 127 MS/TP devices. Up to 32 devices on a single segment are supported, and you can use repeaters to add additional devices or to extend bus length. The router supports baud rates of 9600; 19,200; 38,400; or 76,800 bps.

Note: FX-PCs and MS-FECs support a BACnet router connection only at the field controller (FC) bus, not at the sensor actuator (SA) bus.

Use field wiring to connect the BACnet router to the controller. A custom cable must be used to connect the BACnet router to the phone jack of an FX-PC or MS-FEC controller. A standard modular jack 6-pin cable does not function correctly. Figure 4 and Table 1 provide the pinout required for the custom cable.

Table 1: Custom RJ-11 Cable Connections

<table>
<thead>
<tr>
<th>Connector A Plug¹</th>
<th>Connector B Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1+</td>
<td>Terminal 5+</td>
</tr>
<tr>
<td>Terminal 2-</td>
<td>Terminal 2-</td>
</tr>
<tr>
<td>Terminal 5+</td>
<td>Terminal 1+</td>
</tr>
</tbody>
</table>

¹. Terminals 3, 4, and 6 are not used in the custom pinout.

Note: Verify that Pins 3, 4, and 6 are not connected in the custom cable.

Ethernet Port
The Ethernet port offers a shielded RJ-45 connector. Through auto-negotiation and Auto-MDIX, the port automatically matches its duplex setting, flow control, data rate, and signal polarity to whatever is needed by the attached equipment. Use the included CAT5 Ethernet cable for the connection to your computer.

IP Address Reset Switch
The reset switch is a small hole located on the side of the case. If you press the reset switch with a paper clip (or similar device) for at least 1 second, the switch resets to the default values of the IP address, gateway address, and netmask. After you use the reset switch, you need to reboot the router.

Rebooting the Router
To reboot the router, unplug and then plug the USB cable on the router.

Table 2: Default Address Values

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Default Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.92.68</td>
</tr>
<tr>
<td>Gateway Address</td>
<td>192.168.92.1</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0 (24)</td>
</tr>
</tbody>
</table>

Dimensions

Operation

Light-Emitting Diodes (LEDs)
The router contains three LEDs. See Table 3.
Webpage Consideration

The BACnet/IP to MS/TP Router contains a web server. You can access the web server from any Internet-compatible computer on the local network (Microsoft® Internet Explorer® Version 5.0 or later). To access the MS/TP network, you need the router, a computer used to configure the router, and a connection to the MS/TP network (Figure 6).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB PWR</td>
<td>The power LED glows when sufficient power is provided from the USB host.</td>
</tr>
<tr>
<td>ETH</td>
<td>An Ethernet LED glows green for 100 Mbps and yellow for 10 Mbps (also indicates activities by flashing).</td>
</tr>
<tr>
<td>MS/TP</td>
<td>A green LED flashes when the router receives MS/TP traffic.</td>
</tr>
</tbody>
</table>

Modifying the Computer IP Address

For initial configuration, you need to temporarily modify the computer IP address.

To modify the computer IP address:

1. From the Start menu, select Network Places. The Network Places window appears (Figure 7).
2. From the Network Tasks section, select **View network connections**. The Network Connection window appears.
3. Right-click Local Area Connection and select **Properties**. The Local Area Connection Properties dialog box appears (Figure 8).
4. In the list of connections, select **Internet Protocol (TCP/IP)** and click **Properties**. The Internet Protocol (TCP/IP) window appears (Figure 9).
5. Click **Use the following IP address** and enter the values defined in Table 4.

Table 4: PC Address Settings

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Default Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.92.100 for the PC connected to the router. The final quad can be any value from 3 to 254 (except for 68, which is used by the router).</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>192.168.92.1</td>
</tr>
</tbody>
</table>

6. Click OK.

Configuring the Router

To configure the router:

1. In your web browser address field, enter the router IP address: **192.168.92.68** (Figure 10).
2. Use Table 5 as a reference when you configure the router parameters.

Table 5: Router Parameters (Part 1 of 2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Instance</td>
<td>Enter a unique 22-bit decimal value (0–4, 194, or 303). Each network device must have a unique device instance. Default Value = 0</td>
</tr>
</tbody>
</table>
| **Ethernet Network** | Enter a unique 16-bit decimal value (1–65,534). Each BACnet network, regardless of technology, must have a unique network number. By retaining a value of 0, BACnet Ethernet routing is disabled. Default Value = 0
 Note: The Ethernet Network field represents the BACnet over Ethernet network number. BACnet over Ethernet is a different networking technology than BACnet/IP. Ethernet Network and BACnet/IP Network must each have a unique BACnet network number. |
| **BACnet/IP UDP Port**| Enter a 16-bit hexadecimal value. All BACnet IP devices on the same BACnet network must have the same BACnet IP UDP port assignment. Normally, you do not need to change this value. If you do, avoid well-known ports that have hexadecimal addresses, such as 15, 17, or 50. Instead, choose port numbers in the range of BAC1 through BACF. Default Value = BAC0 (hexadecimal)
 Note: MS-CCT, FX-CommPro BACnet, and FX-PCT identify the BACnet/IP UDP port number in decimal format, while the BACnet router identifies the UDP port number in hexadecimal format. The decimal number 47808 is equivalent to the hexadecimal number BAC0. |
<p>| BACnet/IP Network | Enter a unique 16-bit decimal value (1–65,535). Each BACnet network, regardless of technology, must have a unique network number. Default Value = 1 |
| IP Address | Enter the IP address of the router in dotted decimal format. Select a valid address in the range from 0.0.0.1 to 255.255.255.254. Default Value = 192.168.92.68 |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Subnet</td>
<td>Enter a decimal value (0–30) for the IP subnet mask. This value is the number of bits with a 1 in the mask. Default Value = 24</td>
</tr>
<tr>
<td>IP Gateway</td>
<td>Enter the default gateway for the IP stack. This value is a dotted decimal number that ranges from 0.0.0.1 to 255.255.255.254. Default Value = 192.168.92.1</td>
</tr>
<tr>
<td>MS/TP MAC</td>
<td>Enter the 8-bit (0–127) decimal value for the MAC address of the router's MS/TP port. Each device on the local BACnet network must have a unique MAC address. Lower MAC address numbers are preferred. Default Value = 0</td>
</tr>
<tr>
<td></td>
<td>Note: Many supervisory class controllers (NxEs and FX20/FX60/FX70s) are assigned MS/TP MAC Address 0; therefore, it is important that you change the default value to a different value. We recommend you set the MS/TP router's MAC address to 3, which is unused in most installations.</td>
</tr>
<tr>
<td>MS/TP Network</td>
<td>Enter a unique 16-bit decimal value (1–65,535). Each BACnet network, regardless of technology, must have a unique network number. Default Value = 2,001</td>
</tr>
<tr>
<td></td>
<td>Note: If an NxE exists on the network, view the Hardware tab on the trunk to determine the network number.</td>
</tr>
<tr>
<td>Max. Masters</td>
<td>Enter an 8-bit decimal value (1–127) representing the highest master MAC address in the MS/TP network. The value can be as high as 127. You should use 127 if you are unsure of other MS/TP device addresses. Each MS/TP device should use the same value. The value you define must equal or exceed the highest MAC address for any master on the network. Optimum performance occurs when:</td>
</tr>
<tr>
<td></td>
<td>• this value equals the highest MAC address</td>
</tr>
<tr>
<td></td>
<td>• all masters use sequential MAC addresses</td>
</tr>
<tr>
<td></td>
<td>Default Value = 127</td>
</tr>
<tr>
<td>Max. Info Frames</td>
<td>Enter the maximum number of messages that can route onto the MS/TP network by the router per token pass. The range is 1 to 100 and the typical values are above 20. Smaller values provide less access to the MS/TP network from the BACnet/IP network because they give local MS/TP messages higher priority than those passed to the router by BACnet/IP.</td>
</tr>
<tr>
<td></td>
<td>Default Value = 100</td>
</tr>
<tr>
<td>MS/TP Baudrate</td>
<td>Enter the baud rate of the MS/TP network (9600; 19,200; 38,400; or 76,800). All MS/TP devices on the same MS/TP network must use the same baud rate. Default Value = 38,400</td>
</tr>
<tr>
<td>MS/TP Tolerance</td>
<td>Poll for Master Timeout = 75 ms when set to Lenient and = 20 ms when set to Strict. This setting determines the degree to which interoperability with devices is successful. The Lenient option is less efficient for traffic flow but optimizes interoperability. Default value = Lenient</td>
</tr>
</tbody>
</table>
Technical Specifications

BACnet to MS/TP Router

<table>
<thead>
<tr>
<th>Product Code</th>
<th>TL-BRTRP-0</th>
</tr>
</thead>
</table>
| **Electrical (USB)** | Input Voltage: 5 VDC (nominal)
Input Current: 500 mA (maximum) |
| **Environmental** | Operating temperature: 0 to 50°C (32 to 122°F)
Storage temperature: -40 to 85°C (-40 to 185°F)
Relative humidity: 10 to 95%, noncondensing |
| **Signaling** | USB: 1.1 (2.0 compatible)
Ethernet: 10BASE-T, 100BASE-TX
| **Cable Length Limit** | USB: 5 m
Ethernet: 100 m
MS/TP: 1,200 m (for 18 AWG) |
| **MS/TP bps** | 9600; 19,200; 38,400; 76,800 |
| **MS/TP Node Limit** | 127 devices
32 devices per segment |
| **LEDs** | MS/TP LED
Flashing green = receive activity
USB (Power)
LED Green
Ethernet LED
Green = 100 Mbps
Yellow = 10 Mbps
Flashing = Activity |
| **Ethernet Flow Control** | Half-duplex – backpressure
Full-duplex – Institute of Electrical and Electronic Engineers (IEEE) 802.3x PAUSE |
| **Connectors** | 3-pin (MS/TP) Pin Assignments (also explained on the product label)
RJ-11 (MS/TP) Pin Assignments
2 RT -
4 COM
5 RT+
All other pins are unused.
RJ-45 (MDI Ethernet) Pin Assignments
1 TD+
2 TD-
3 RD+
6 RD-
All other pins are unused. |
| **Compliance** | FCC Compliant to CFR 47, Part 15, EN55022 Class A; CE Mark; ROHS |

European Single Point of Contact:

JOHNSON CONTROLS
WESTENDHOF 3
45143 ESSEN
GERMANY

NA/SA Single Point of Contact:

JOHNSON CONTROLS
507 E MICHIGAN ST
MILWAUKEE WI 53202
USA

APAC Single Point of Contact:

JOHNSON CONTROLS
C/O CONTROLS PRODUCT MANAGEMENT
NO. 22 BLOCK D NEW DISTRICT
WUXI JIANGSU PROVINCE 214142
CHINA