The following work must be completed in accordance with the installation instructions:

PRE-STARTUP UNIT CHECKS (NO POWER)

The following basic checks should be made with the customer power to the unit switched OFF.

WARNING: Proper electrical lock out and tag procedures must be followed.

Check the system 24 hours prior to initial start:

1. Inspect the unit for shipping or installation damage. Repair as needed. □
2. Has all piping been completed? □
3. Are there refrigerant or water piping leaks? Repair as needed. □
4. Open each system liquid shut off valve, economizer shut off valve, discharge shut off valve and oil line ball valve. □
5. Adjust spring isolators (if installed) and ensure they are not bottomed out. □
6. Is the pump controlled by chiller controller? In sub-freezing regions, failure to use a chiller controller to control chilled water pump will void warranty. □
7. Are water pumps on? Check and adjust water pump flow rate, preferably using an ultrasonic flow meter. Otherwise adjust pressure drop across the evaporator. □

CAUTION: Excessive flow may cause catastrophic damage to the evaporator.

8. Check the control panel to ensure it is free of foreign material (wires, metal chips, tools, documents, etc.). Also check for signs of water or moisture. Ensure door gasket seals are sealing properly and incoming power wiring conduit is caulked. □

10. Check tightness of the incoming power wiring. □

11. Does the field wiring match the 3-phase power requirements of the chiller (refer to the chiller nameplate)? □

12. Is a flow switch connected between Terminals 2 and 13 on the User Terminal Block 1TB in the panel? It is recommended that the auxiliary pump contacts be placed in series with the flow switch for additional protection, if the pump is turned OFF during chiller operation. Whenever the pump contacts are used, the coil of the pump starter should be suppressed with an RC suppressor (031-00808-000). □

13. Ensure the power supply connection to water box heater kit is correctly made, if applicable. If the water box heater option is selected, YVAA and YVFA open loops are needed to make the power supply connection in customer sites. □

14. Is all control wiring connected correctly to the user input terminals? □
15. Apply power to the chiller and ensure the compressor heaters are turned on 24 hours prior to system startup ..

EQUIPMENT STARTUP CHECKLIST

NOTE: Before proceeding with the following unit checks, verify the heaters have been run for 24 hours prior to starting the unit.

A. UNIT CHECKS (NO POWER)

The following basic checks should be made with the customer power to the unit switched OFF.

WARNING: Proper electrical lock out and tag procedures must be followed.

1. Open each system liquid shut off valve, economizer shut off valve, discharge shut off valve and oil line ball valve. If optional eductor and suction valves are installed, be sure to open them. Failure to open the eductor valve will result in “Eductor Clog” faults........................

2. Is the oil separator oil level(s) maintained so that an oil level is visible in the sight glass when a compressor is running at full speed for 15 to 30 minutes? An oil level may not be visible in the sight glass when the compressor is OFF or running below full speed; and it may be necessary to run the compressor at full speed to obtain a level. In shutdown situations and at some load points, much of the oil may be in the evaporator and the level in the separator may fall below the bottom sight glass

Sight glasses will vary in type depending upon the manufacturer. One type will have balls that float in the sight glasses to indicate level. Another type will have a bulls’ eye glass. The bulls’ eye glass will tend to appear to lose the lines in the bulls’ eye when the level is above the glass. Be careful when viewing the sight glass not to confuse a full sight glass with an empty sight glass. Oil level should be visible, but not above the top of the sight glass after operating at full speed for 15 to 30 minutes. In the rare situation where oil levels are high, drain the oil to lower the level until it is visible in the sight glass. This should be done while operating at full speed.

Oil levels in the oil separator above the top of the sight glass should be avoided and may cause excessive oil carryover in the system. High oil concentration in the system may cause nuisance trips resulting from low discharge superheat, low solution pressure and incorrect readings from temperature sensors. Temperature sensor errors may result in poor refrigerant control and liquid overfeed to the compressor. Excessive oil will also reduce evaporator performance.

In the unlikely event it is necessary to add oil, connect a YORK oil pump to the charging valve on the oil separator, but do not tighten the flare nut on the delivery tubing. With the bottom (suction end) of the pump submerged in oil to avoid entrance of air, operate the pump until oil drips from the flare nut joint, allowing the air to be expelled, and tighten the flare nut. Open the compressor oil charging valve and pump in oil until it reaches the proper level as described above.

3. Are water pumps are ON? Check and adjust water pump flow rate preferably using an ultra sonic flow meter. Otherwise adjust pressure drop across the evaporator

CAUTION: Excessive flow may cause catastrophic damage to the evaporator.

4. Check status of condenser fans. Blades should rotate freely and not hit shield. Refer to Fan information in Section 6 - Commissioning of the Form 201.28-NM1.1..........................

5. Check tightness of the incoming power wiring inside the power panel and inside the motor terminal boxes..................................

6. Check the tightness of power supply connection to the water box heater kit, if applicable. Make sure the waterproofing level of connection can meet IP65..

7. Check for proper size fuses in control circuits...

8. Does the field wiring match the 3-phase power requirements of the chiller? (Refer to chiller nameplate)..

9. Are all water temperature sensors inserted completely in their respective wells and coated with heat conductive compound?............................

10. Is the liquid line temperature sensor tightly strapped on the liquid line and insulated?........

11. Is the glycol level in the VSD cooling system 9 to 15 inches (23 to 28 cm) from the top of the fill tube? This check should be performed prior to running the pump ..

CAUTION: Never run the glycol pump without coolant! Running the glycol pump without coolant may damage the pump seals.

Always fill the system with approved YORK coolant (P/N 013-03344-000) to avoid damage to the pump, cooling system heat sinks and the chiller. Overheating of the heat sinks and power panel will also occur.

12. Are the remote start/stop for Sys #1 on Terminals 2 to 15 and Sys #2 on Terminals 2 to 16 closed on the User Terminal Block 1TB to allow the systems to run? If remote cycling devices are not utilized, place a wire jumper between these terminals ..
13. Is a flow switch connected between Terminals 2 and 13 on the User Terminal Block 1TB in the panel? Throttle back flow to ensure the flow switch opens with a loss of flow at the minimum recommended flow. It is recommended that auxiliary pump contacts be placed in series with the flow switch for additional protection, if the pump is turned OFF during chiller operation. Whenever the pump contacts are used, the coil of the pump starter must be suppressed with an RC suppressor (031-00808-000) ..

10. Are the “Factory Set” overload potentiometers on the VSD Logic Board set correctly? Press the VSD DATA key and use the arrow keys, to scroll to the compressor overload settings. In the unlikely event that they are not set correctly, adjust the potentiometers until the desired values are achieved ..

WARNING: The VSD is powered up and live. High voltage exists in the area of the circuit board on the bus bars, VSD Pole Assemblies, and wiring to the input inductor.

Adjust the potentiometers, if needed, using Table 20 Compressor Motor Overload Settings in the IOM (Form 201.28-NM1.1) The potentiometers are System 1=R19 and System 2=R64.

Record the Overload Potentiometer settings below:
R19 = System 1 = ___________ Amps
R64 = System 2 = ___________ Amps

CAUTION: Incorrect swettings of the potentiometers may cause damage to the equipment.

11. Press the STATUS key. If the following message appears, immediately contact Johnson Controls Product Technical Support. The appearance of this message may mean the chiller has lost important factory programmed information. The serial number and other important data may need to be reprogrammed. ..

UNIT WARNING: INVALID SERIAL NUMBER
ENTER UNIT SERIAL NUMBER

NOTE: Changing the programming of this feature requires the date and time to be set on the chiller prior to programming. Additional information regarding this message and how to enter the serial number with the factory provided password is outlined in the Serial Number Programming.

12. Program the required options into the Panel for the desired operating requirements (Refer to Section 8 in Form 201.28-NM1.1). Record the values below. ..

Display Language = ______________________
Chilled Liquid Mode = ______________________
Local/Remote Mode = ______________________
Display Units = ______________________
Lead/Lag Control = ______________________
Remote Temperature Reset = ______________________
Remote Current Reset = _____________________
Remote Sound Limit ________________________
Low Ambient Cutout ________________________

CAUTION: Damage to the chiller could result if the options are improperly programmed.

C. PROGRAMMED VALUES
1. Program the required operating values into the microprocessor for cutouts, safeties, etc., and record them below (Refer to Section 8 in Form 201.28-NM1.1) ..

Suction Pressure Cutout = ________ PSIG (kPa)
Low Ambient Cutout = ________________ °F
Leaving Chilled Liquid Temperature Cutout = ________________ °F
Motor Current Limit = _________________ % FLA
Pulldown Current Limit = ______________ % FLA
Pulldown Current Limit Time = __________ MIN
Subcooling Setpoint = ________________ °F
Remote Unit ID # = ________________________
Sound Limit Setpoint = ________________ %
Eductor Differential = _________________ °F
Eductor Safety Time = ________________ MIN
Motor Temp Unload = _________________ °F

D. CHILLED LIQUID SETPOINT
Program the Chilled Liquid Setpoint/Range and record: ..
1. Local Cooling Setpoint = __________ °F
2. Local Cooling Range = _____ to ______ °F
3. Maximum Remote Temperature Reset = _______ to ______ °F

E. DATE/TIME, DAILY SCHEDULE, AND CLOCK JUMPER
1. Set the date and time ..
2. Program the Daily Schedule start and stop times ..
3. Place the panel in Service Mode and turn on each fan stage one by one. Ensure the fans rotate in the correct direction, so air flow exits the top of the chiller ..
4. Ensure the Data Logging feature is enabled ..

5. To ensure the glycol level in the VSD cooling system is 9 to 15 inches (23 to 28 cm) from the top of the fill tube while running, remove the fill tube cap, place the chiller in the Service Mode and start the pump. Be sure to re-install the cap before stopping the glycol pump to avoid overflow as the glycol pump is turned OFF. The glycol system holds about 3.5 to 5.5 gallons of coolant (P/N 013-03344-000) ..

6. Check the optional fan VSD programming (if equipped) ..

F. INITIAL STARTUP
After the control panel has been programmed and the compressor heaters have been energized for at least 8 hours (ambient temperature more than 96°F or 24 hours (ambient temperature less than 86°F, the chiller may be placed into operation.

1. Turn on the UNIT switch and program the system switches on the keypad to the ON position ..
2. If cooling demand permits, the compressor(s) will start and a flow of refrigerant will be noted in the sight glass, after the anti recycle timer times out and the precharge of the DC Bus is completed. After several minutes of operation, the bubbles in the liquid line sight glass will disappear and there will be a solid column of liquid when the Condenser Drain (Flash Tank Feed) Valves stabilize ..
3. Allow the compressor to run a short time, being ready to stop it immediately if any unusual noise or adverse conditions develop. Immediately at startup, the compressor may make sounds different from its normal high-pitched sound. This is due to the compressor coming up to speed and the initial lack of an oil film sealing the clearances in the rotors. This should be of no concern and lasts for only a short time ..
4. Check the system operating parameters ..

G. REFRIGERANT CHARGE
1. Record the level of refrigerant in the evaporator sight glass with each system operating at full speed for 15 to 30 minutes. A refrigerant level should be visible in each evaporator sight glass ..

2. Remove charge if the level is above the sight glass and add charge if the level is below the sight glass ..
H. OIL LEVELS
Record the oil level in the oil separator sight glass with each system operating at full speed for 15 to 30 minutes. An oil level should be visible in the sight glass, but not above the sight glass.

System #1 System #2 Sight Glass

I. LIQUID LINE SUBCOOLING
Record the liquid Line Subcooling from the panel display after operating at full speed for 15 to 30 minutes.

Sys 1 Liquid Subcooling ______________ °F
Sys 2 Liquid Subcooling ______________ °F

J. LOG READINGS
Record the following temperatures and pressures from the panel display:

Chilled Liquid Temperature: ______________ °F
VSD Frequency: ______________ Hz
Sys 1 Oil Pressure: ______________ PSIG
Sys 1 Discharge Pressure: ______________ PSIG
Sys 1 Suction Pressure: ______________ PSIG
Sys 1 Condenser Liquid Pressure: ______________ PSIG
Sys 1 Condenser Liquid Temperature: ______________ °F
Sys 1 Oil Temperature: ______________ °F
Sys 1 Eductor Temperature: ______________ °F
Sys 1 Condenser Liquid Temperature: ______________ °F
Sys 1 Subcooling: ______________ °F
Sys 1 Saturated Liquid Temperature: ______________ °F
Sys 1 Discharge Temperature: ______________ °F
Sys 1 Discharge Superheat: ______________ °F
Sys 1 SAT Discharge Temperature: ______________ °F
Sys 1 Flash Tank Level: ______________ %
Sys 1 Economizer Valve: ______________ %
Sys 1 Condenser Subcooling: ______________ °F
Sys 1 Condenser Drain Valve: ______________ %
(Flash Tank Feed Valve)
Sys 1 Condenser Fans # ON: ______________
SYS 1 VSD Fan Speed: ______________ %
Sys 1 VI Step Solenoid 1: ______________
Sys 1 VI Step Solenoid 2: ______________
Sys 1 Run Time: __D___HR___MIN___SEC
Sys 2 Oil Pressure: ______________ PSIG
Sys 2 Discharge Pressure: ______________ PSIG
Sys 2 Suction Pressure: ______________ PSIG
Sys 2 Condenser Liquid Pressure: ______________ PSIG
Sys 2 Condenser Liquid Temperature: ______________ °F
Sys 2 Oil Temperature: ______________ °F
Sys 2 Eductor Temperature: ______________ °F
Sys 2 Condenser Liquid Temperature: ______________ °F
Sys 2 Subcooling: ______________ °F
Sys 2 Saturated Liquid Temperature: ______________ °F
Sys 2 Discharge Temperature: ______________ °F
Sys 2 Discharge Superheat: ______________ °F
Sys 2 SAT Discharge Temperature: ______________ °F
Sys 2 Superheat: ______________ °F
Sys 2 SAT Discharge Temperature: ______________ °F
Sys 2 Flash Tank Level: ______________ %
Sys 2 Economizer Valve: ______________ %
Sys 2 Condenser Subcooling: ______________ °F
Sys 2 Condenser Drain Valve: ______________ %
(Flash Tank Feed Valve)
Sys 2 Condenser Fans # ON: ______________
SYS 2 VSD Fan Speed: ______________ %
Sys 2 VI Step Solenoid 1: ______________
Sys 2 VI Step Solenoid 2: ______________
Sys 2 Run Time: __D___HR___MIN___SEC

K. LEAK CHECKING
1. Leak check compressors, fittings, and piping to ensure there are not any leaks.

If the chiller is functioning satisfactorily during the initial operating period with no safety trips; and the chiller controls chilled liquid temperature; the chiller is now ready to be placed into service.